DIFFERENTIATION (2020-21)

MCQs & VSA QUESTIONS

SUJITHKUMAR KP

Find $\frac{dy}{dx}$, if $x^2 + y^2 = 5$ A) $-\frac{x}{y}$ B) $\frac{x}{y}$ Differentiate $\sin^{-1}x^2$ with respect to x. 1

A)
$$-\frac{x}{y}$$

B)
$$\frac{x}{y}$$

C)
$$\frac{y}{x}$$

D)
$$2x + 2y = 0$$

ANS: A)

2

A)
$$\frac{x}{\sqrt{1-x^4}}$$

B)
$$\frac{2x}{\sqrt{1-x^2}}$$

C)
$$\frac{-x}{\sqrt{1-x^4}}$$

D)
$$\frac{2x}{\sqrt{1-x^2}}$$

ANS: D)

Differentiate $log_e(sinx)$ with respect to x. A) sinx B) tanx C) cotx. 3

ANS: C)

If $y = e^{-3logx}$ then find $\frac{dy}{dx}$ 4

A)
$$\frac{3}{x^4}$$

B)
$$\frac{3}{x^3}$$

C)
$$-\frac{3}{x^4}$$

D)
$$\frac{4}{100}$$

ANS: C)

Differentiate $\log (\log x)$, w.r.t. x. 5

A)
$$\frac{1}{x \log x}$$

B)
$$\frac{1}{\log x}$$

C)
$$\frac{x}{\log x}$$

D)
$$\frac{-1}{x \log x}$$

ANS: A)

 $\begin{cases} kx^2, & x \ge 1\\ 4, & x < 1 \end{cases}$ is continuous at x = 1. Find the value of k, so that the function f(x) =6

A)
$$k = 4$$

B)
$$k = -4$$

C)
$$k = 8$$

D)
$$k = 2$$

ANS: A)

Find the value of k so that the function f defined by 7

A)
$$\frac{2}{\pi}$$

B)
$$\frac{\pi}{2}$$

$$C)-\frac{\pi}{2}$$

D)
$$-\frac{2}{-}$$

ANS: D)

Find $\frac{d^2y}{dx^2}$, if $y = \log x$

A)
$$\frac{1}{x^2}$$

B)
$$-\frac{1}{x^2}$$

C)
$$x^2$$

D)
$$\frac{1}{r}$$

ANS: B)

For what value of *k* is the function defined by

ANS: B)

For what value of κ is the random $f(x) = \begin{cases} \frac{\sin x + x \cos x}{x}, & x \neq 0 \\ k, & x = 0 \end{cases}$ continuous at x = 0?

A) -2B) 2C) $\frac{1}{2}$ D) 1ANOTHER function $f(x) = \begin{cases} \frac{\sin 3x}{x}, & x \neq 0 \\ \frac{k}{2}, & x = 0 \end{cases}$ is continuous at x = 0, then find the value of k. 10

A) -6

B) 3

D) 6

ANS: D)

Find k, so that the function $f(x) = \begin{cases} \frac{x^2 - 25}{x - 5}, & x \neq 5 \\ k, & x = 5 \end{cases}$ is continuous at x = 511

A) 10

B) 5

C) 25

D) 6

ANS: A)

12. Find
$$\frac{dy}{dx}$$
 at $(4,9)if \sqrt{x} + \sqrt{y} = 5$. ANS: $-\frac{3}{2}$

- 13. Differentiate $y = e^x + e^{x^2} + e^{x^3} + e^{x^4} + e^{x^5}$ with respect to x.
- 14. Differentiate following with respect to $x : \sin(m \sin^{-1} x)$

* If
$$f(x) = \sqrt{\frac{secx - 1}{secx + 1}}$$
, find $f'\left(\frac{\pi}{3}\right)$ CBSE 2020

16

$$f(x) = \begin{cases} kx^2 + 5, & x \le 1 \\ 2, & x > 1 \end{cases}$$
 is continuous at $x = 1$. CBSE 2020

- If $(\cos x)^y = (\cos y)^x$ find $\frac{dy}{dx}$. If the function f(x) defined by 17
- 18

$$f(x) = \begin{cases} a \sin \frac{\pi}{2}(x+1) &, & x \le 0 \\ \frac{\tan x - \sin x}{x^3} &, & x > 0 \end{cases}$$
 is continuous at $x = 0$, find a.

19 If
$$\frac{x}{a} + \frac{y}{b} = 1$$
 find $\frac{dy}{dx}$

20 If
$$x = ae^{\theta}(\sin\theta - \cos\theta)$$
 and $y = ae^{\theta}(\sin\theta + \cos\theta)$ find $\frac{dy}{dx}$ at $\theta = \frac{\pi}{4}$

21 If
$$\sin^{-1}\left(\frac{2^{x+1} \cdot 3^x}{1+(36)^x}\right)$$
, find $\frac{dy}{dx}$

21 If
$$sin^{-1}\left(\frac{2^{x+1} \cdot 3^x}{1+(36)^x}\right)$$
, find $\frac{dy}{dx}$
22 If $y = tan^{-1}\left(\frac{5ax}{a^2-6x^2}\right)$, show that $\frac{dy}{dx} = \frac{3a}{a^2+9x^2} + \frac{2a}{a^2+4x^2}$
23 Differentiate sin^2x with respect to $e^{\cos x}$.

- 23
- 24 Differentiate the function $\sin^{-1}\left(\frac{2^{x+1}}{1+4^x}\right)$ with respect to x.

25 If
$$y = \tan^{-1}\left(\frac{5ax}{a^2 - 6x^2}\right)$$
, show that $\frac{dy}{dx} = \frac{3a}{a^2 + 9x^2} + \frac{2a}{a^2 + 4x^2}$

25 If
$$y = \tan^{-1}\left(\frac{5ax}{a^2 - 6x^2}\right)$$
, show that $\frac{dy}{dx} = \frac{3a}{a^2 + 9x^2} + \frac{2a}{a^2 + 4x^2}$
26 If $f(x) = \begin{cases} \frac{x-4}{|x-4|} + a , & x < 4 \\ a+b & , x = 4 \\ \frac{x-4}{|x-4|} + b & , x > 4 \end{cases}$ is continuous at at $x = 4$, find a and b.

If
$$y = tan^{-1} \left(\frac{4x}{1 - 4x^2} \right)$$
 then prove that $\frac{dy}{dx} = \frac{4}{(1 + 4x^2)}$

Differentiate the following w.r.t x:
$$tan^{-1}\sqrt{\frac{1-cosx}{1+cosx}}$$

- 29 Differentiate the following w.r.t x: $tan^{-1} \left(\frac{cosx + sinx}{cosx - sinx} \right)$
- 30 Differentiate the following w.r.tx: $tan^{-1}(secx + tanx)$

- Differentiate the following w.r.t x $tan^{-1} \left(\frac{\sqrt{x} x}{1 + x^{3/2}} \right)$
- If $y = \log \tan \left(\frac{\pi}{4} + \frac{x}{2}\right)$, then show that $\frac{dy}{dx} \sec x = 0$.

33 If
$$y = \sqrt{x + \sqrt{x + \sqrt{x + \cdots \dots to \infty}}}$$
, prove that $\frac{dy}{dx} = \frac{1}{(2y-1)}$.

- 34. Give an example of a function which is continuous but not differentiable at exactly two points.
- 35. if $y = \log x$, find $\frac{d^2y}{dx^2}$
- 36. If $y = \sin 3x$, find y_2
- 37. if $y = e^{-3x}$ find $\frac{d^2y}{dx^2}$
- 38. If $y = x \cos x$, find y_2 .
- 39. If $y = e^x + e^{-x}$ prove that y'' = y.
- 40. If $y = \sin 5x$ find $\frac{d^2y}{dx^2}$
- 41. If $y = 500e^{7x} + 600e^{-7x}$, show that $\frac{d^2y}{dx^2} = 49y$.
- 42. If the derivative of $tan^{-1}(a + bx)$ takes the value 1 at x = 0, prove that $b = 1 + a^2$.
- 43. Differentiate $\cos x$ with respect to e^x
- 44. Given f(0) = -2, f'(0) = 3. Find h'(0), where h(x) = x f(x).
- 45. Given functions $f(x) = \frac{x^2 4}{x 2}$ and g(x) = x + 2, $x \in R$. Then which of the following is correct?
 - a) f is continuous at x = 2, g is continuous at x = 2
 - (b) f is continuous at x = 2, g is not continuous at x = 2
 - (c) f is not continuous at x = 2, g is continuous at x = 2
 - (d) f is not continuous at x = 2, g is not continuous at x = 2

- 46.
 - A function f is said to be continuous for $x \in R$, if
 - (a) it is continuous at x = 0
 - (b) differentiable at x = 0
 - (c) continuous at two points
 - (d) differentiable for $x \in R$
- 47. A function $f(x) = \sin x + \cos x$ is continuous function. State true or false.
- 48. The derivative of $\sin x$ with respect to $\log x$ is
- 49. If $y = Ae^{5x} + Be^{-5x}$ then $\frac{d^2y}{dx^2}$ is equal to
- 50 $y = x^x$, $\frac{dy}{dx}$ is equal to _____.
- 51. If $y = a \sin^3 t$, $x = a \cos^3 t$, then $\frac{dy}{dx} = 1$ at $t = \frac{3\pi}{4}$. State true or false.
- State which of the following is continuous as well as differentiable for $x \in R$
 - (a) |x|
 - (*b*) [*x*]
 - (c) polynomial function
 - $(d) \operatorname{sgn}(x)$
- 53. Derivative of $\sin x$ with respect to $\log x$, is
- 54. State the function which is continuous for all $x \in R$.
 - $(a) \sin x$
 - $(b) \frac{x^2-25}{x-5}$
 - (c)[x]
 - $(d) \operatorname{sgn}(x)$
- If $x = at^2$, y = 2at, then $\frac{d^2y}{dx^2}$ is