APPLICATION OF DIFFERENTIATION

CLASS XII (2025-26)

SUJITHKUMAR KP

TYPE -1

- Radius of a variable circle is changing at the rate of 5 cm/s. What is the radius of the circle at a time when its area is changing at the rate of 100 cm²/s?
- Find the point on the curve $y = x^2$, where the rate of change of x-coordinate is equal to the rate of change of y-coordinate.
- 3 The side of an equilateral triangle is increasing at the rate of 0.5 cm/s. Find the rate of increase of its perimeter
- 4 If the rate of change of volume of a sphere is equal to the rate of change of its radius, then find the radius
- A stone is dropped into a quiet lake and waves move in circles at a speed of 5 cm per second. At the instant when the radius of the circular wave is 8 cm, how fast is the enclosed area increasing?
- A balloon which always remains spherical has a variable diameter $\frac{3}{2}(2x+1)$. Find the rate of change of its volume with respect to x.
- A spherical balloon is being inflated by pumping in $16 \text{ cm}^3/\text{s}$ of gas. At the instant when balloon contains $36\pi \text{ cm}^3$ of gas, how fast is its radius increasing?
- A particle moves along the curve 6y = x3 + 2. Find the points on the curve at which the y-coordinate is changing 8 times as fast as the x-coordinate
- 9 The side of an equilateral triangle is increasing at the rate of 2 cm/s. At what rate is its area increasing when the side of the triangle is 20 cm?
- The length x of a rectangle is decreasing at the rate of 5 cm/minute and the width y is increasing at the rate of 4 cm/minute. When x = 8 cm and y = 6 cm, find the rate of change of (a) the perimeter, and (b) the area of the rectangle
- A man 160 cm tall walks away from a source of light situated at the top of the pole 6m high, at the rate of 1.1 m/s. How fast is the length of his shadow increasing when he is 1m away from the pole?

(Ans: 0.4 m/s)

- Sand is pouring from a pipe at the rate of 12 cm³/s. The falling sand forms a cone on the ground in such a way that the height of the cone is always one-sixth of the radius of the base. How fast is the height of the sand cone increasing when the height is 4 cm?
- A ladder 5 m long is leaning against a wall. The bottom of the ladder is pulled along the ground, away from the wall, at the rate of 2 cm/s. How fast is its height on the wall decreasing when the foot of the ladder is 4 m away from the wall?
- At what point of the ellipse $16x^2 + 9y^2 = 400$, does the ordinate decrease at the same rate at which the abscissa increases?
- An edge of a variable cube is increasing at the rate of 5cm per second. How fast is the volume increasing when the side is 15cm?

TYPE -2

- 1 Define increasing and decreasing functions.
 - ANS: A function is said to be an increasing function if the value of y increases with the increase in x. A function is said to be a decreasing function if the value of y decreases with the increase in x.
- Show that the function given by f(x) = 7x 3 is increasing on **R**.
- Find the intervals in which the function f given by $f(x) = x^2 4x + 6$ is (a) increasing (b) decreasing
- Find the intervals in which the function f given by $f(x) = 4x^3 6x^2 72x + 30$ is

- (a) increasing (b) decreasing.
- Prove that the function $f(x) = x^3 3x^2 + 3x + 107$ is increasing in R. 5
- Show that the following functions are strictly increasing $f(x) = x^3 3x^2 + 4x$ 6
- Show that the function $f(x) = x^2 5x + 1$ is neither increasing nor decreasing in [0, 5]. 7
- TRY YOURSELF
 - 1. Find the intervals in which the function *f* given by

$$f(x) = 2x^2 - 3x$$
 is (a) increasing (b) decreasing

- 2. Find the intervals in which the function f given by $f(x) = 2x^3 3x^2 36x + 7$ is
- (a) increasing (b) decreasing
- 3. Prove that the function f given by $f(x) = x^2 x + 1$ is neither strictly increasing nor decreasing on
- 4) Find the intervals in which the function f given by (a) increasing (b) decreasing.
- i) $f(x) = x^3 3x^2 + 3x 100$
- ii) $f(x) = 4x^3 6x^2 + 3x + 12$
- iii) $f(x) = x^3 6x^2 + 12x 16$
- Find the maximum and minimum values if any of the function given by $f(x) = -(x-1)^2 + 10$. 9
- Find the maximum and minimum values if any of the function given by $f(x) = \sin 2x + 5$. 10
- 11 Find the maximum and minimum values, if any, of the function given by $f(x) = |\sin 4x + 3|$
- 12
- Find the maximum and minimum value of the function y = |x 3| + 7, $x \in R$ Find the least value of 'a' such that the function $f(x) = x^2 + ax + 1$ is strictly increasing on [1, 2]. 13
- Find the intervals in which the function f given by $f(x) = \frac{3}{10}x^4 \frac{4}{5}x^3 3x^2 + \frac{36}{5}x + 11$ is 14 (i) strictly increasing (ii) strictly decreasing.
- Find the intervals in which the function f given by $f(x) = 8 + 36x + 3x^2 2x^3$ is increasing or decreasing. 15
- Find the intervals in which the function f given by $f(x) = \sin 3x, x \in \left[0, \frac{\pi}{2}\right]$ is (i) increasing (ii) 16 decreasing.
- It is given that at x = 1, the function $f(x) = x^4 62x^2 + ax + 9$ attains its maximum value on the 17 interval [0, 2]. Find the value of a.
- 18 Show that the function $f(x) = \log |\cos x|$ is strictly decreasing in $\left(0, \frac{\pi}{2}\right)$.
- Find the intervals in which the function f given by $f(x) = x \sin x$ in $[0, 2\pi]$ is increasing or decreasing 19
- 20 Show that the function $\tan^{-1}(\cos x + \sin x)$ is strictly increasing on $\left(0, \frac{\pi}{4}\right)$.
- Show that the function $f(x) = \log \sin x$ is strictly increasing on $\left(0, \frac{\pi}{2}\right)$ strictly decreasing on $\left(\frac{\pi}{2}, \pi\right)$ 21
- Which of the following functions are strictly decreasing on $\left(0, \frac{\pi}{2}\right)$ 22
 - i) cosx ii) cos2x iii) cos3x iv) tanx
- 23 **HOME WORK**
 - 1. Find the intervals in which the function f given by
 - $f(x) = x^3 x^2 1$ is increasing or decreasing.
 - ANS: increasing on $(-\infty, 0) \cup (4, \infty)$ decreasing on (0, 4)
 - 2. Find the intervals in which the function f given by $f(x) = -2x^3 9x^2 12x + 1$ is increasing or decreasing
 - decreasing on $(-\infty, -2) \cup (-1, \infty)$ ANS: increasing on (-2, -1)
 - 3. Find the intervals in which the function

$$f(x) = \frac{x}{2} + \frac{2}{x}$$
, $x \ne 0$ is strictly increasing or decreasing

ANS: increasing on $(-\infty, -2) \cup (2, \infty)$ decreasing on (-2, 2)

4. Find the intervals in which the function

 $f(x) = x^4 - 2x^2$ is strictly increasing or decreasing.

ANS: increasing on $(-1, 0) \cup (1, \infty)$ decreasing on $(-\infty, -1) \cup (0,1)$

5. Find the intervals in which the function f given by $f(x) = 2x^3 - 9x^2 + 12x + 15$ is strictly increasing or strictly decreasing.

ANS:1 Strictly increasing for $(-\infty, 1) \cup (2, \infty)$, strictly decreasing in (1, 2)

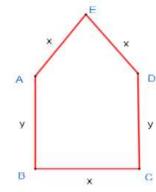
6. Prove that the function $f(x) = x^3 - 3x^2 + 3x + 107$ is increasing in R. ANS:

$$f'(x) = 3x^2 - 6x + 3 = 3(x^2 - 2x + 1)$$

= $3(x-1)^2 > 0$. Hence, function is increasing in R .

- Find the local maximum and local minimum values of the function $f(x) = \sin x + \frac{1}{2}\cos 2x$, $0 < x < \frac{\pi}{2}$
- A window has the shape of a rectangle surmounted by an equilateral triangle. If the perimeter of the window is 12 m, We need to find the dimensions of the rectangle that will produce the largest area of the window using second derivative test.

Let x m be the side of the equilateral triangle, and y m. be the length of the rectangle and Area of the window is A sq. m.



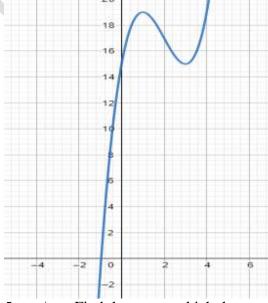
27 Given the graph of the function:

$$f(x) = x^3 - 6x^2 + 9x + 15.$$

- i) Find the critical point of the function.
- ii) Find all the points of local maxima and local minima of the function.
- iii) Find local minimum or local maximum values.

OR

Find the intervals in which the function is strictly increasing/strictly decreasing.



- The radius r cm of a blot of ink is increasing at the rate of 1.5 mm/sec. Find the rate at which the area A is increasing after 4 sec. (Ans: $0.18 \pi cm^2/sec$)
- Find the intervals in which the function f given by $f(x) = 8 + 36x + 3x^2 2x^3$ is increasing or decreasing.
- Separate $\left(0, \frac{\pi}{2}\right)$ into subintervals in which the function $f(x) = \sin 3x$ is increasing or decreasing

- Find all points of local maxima and local minima of the function f given by $y = x^2$. Find also local minimum or local maximum values.
- Using First derivative Test, find all points of local maxima and local minima of the function f given by $f(x) = x^3 3x + 3$. Find also local minimum or local maximum values
- Using second derivative test, find local maximum and local minimum values of the function f given by $f(x) = 3x^4 + 4x^3 12x^2 + 12$.
- Find all the points of local maxima and local minima of the function f given by $f(x) = x^3 6x^2 + 9x + 15$. Find also local minimum or local maximum values.
- Find the local minimum local minimum value $y = x^5 5x^4 + 5x^3 1$
- 36 HOME WORK

Find all the points of local maxima and local minima of the function f given below. Find also local minimum or local maximum values.

$$1. x^3 - 3x$$

ANS: $local\ maximum\ value = 2$ at x = -1,

local minimum value = -2 at x = 1

2.
$$(x-1)(x+2)^2$$

ANS: local maximum value = 2 at x = -1,

local minimum value = -2 at x = 1

3.
$$\frac{x}{2} + \frac{2}{x}$$
, $x > 0$

ANS: *local minimum* value = 2 at x = 2

(x = -2 discarded)

$$4. \frac{1}{x^2+1}$$

ANS: local maximum value = $\frac{1}{2}$ at x = 0.

$$5. \quad 2x^3 - 21x^2 + 36x - 20$$

ANS: $local\ maximum\ value = -3$ at x = 1

local minimum value = -128 at x = 6

6. Find the local maxima and local minima of the cubic function $f(x) = x^3 - 3x^2 - 9x + 2$. Find also local minimum or local maximum values.

ANS: Max at x=-1 Max. value is 7

Min. at x = 2 Min. value is -20

7. Find the local extrema points of the function

 $f(x)=(x-a)e^x$, where a is an arbitrary real number.

ANS: Local Min. $(a-1, -e^{a-1})$

- Find all the points of local maxima and local minima, if any, of the function f given by $f(x) = sin^4x + cos^4x$, $0 < x < \frac{\pi}{2}$. Find also local minimum or local maximum values.
- Find the local maximum and the local minimum values, if any, for the function $f(x) = \sin 2x x$, in $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$. Also indicate the points at which local maximum and local minimum exist.
- Find the absolute maximum value and the absolute minimum value for the function $(x) = \sin x + \cos x \ x \in [0, \pi]$.
- Find the absolute maximum value and the absolute minimum value for the function $f(x) = \frac{x+1}{\sqrt{x^2+1}}$, $0 \le x \le 2$
- At what points in the interval $[0, 2\pi]$ does the function sin2x attain its maximum.
- 42 What is the maximum value of the function sinx + cosx.

- 43 Prove that the following function do not have maxima or minima.
 - i) e^x
- ii) logx
- iii) x + 2 iv) $x^3 + x^2 + x + 1$
- 45 HOME WORK
 - 1) Find the maximum value of $2x^2 24x + 107$ in the interval [1.3].

ANS: 89 at x = 3

2) Find all points of local maxima and local minima, if any, of $f(x) = x^3 - 6x^2 + 9x + 7$ Also find the max. min. values.

7 at x = 3ANS: 11 at x = 1,

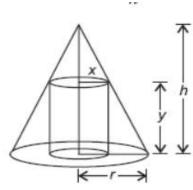
- 3) Find all points of local maxima and local minima, if any, of the following function. Also find the max, min. values.
- i) $f(x) = 2x^3 24x + 107$
- ii) $f(x) = x^3 + 4x^2 3x + 1$
- iii) $f(x) = 3x^3 4x + 2$
- iv) $f(x) = 2x^3 3x^2 12x + 4$
- 4) Find all points of local maxima and local minima, if any, of the following function. Also find the max, min. values.
- i) $y = \frac{x^4}{x-1}$, $x \neq 1$
- ii) y = sinx cosx, $0 < x < 2\pi$
- 5 Find the local extrema of the function

$$f(x) = x^4 - 8x^3 + 22x^2 - 24x + 1$$

ANS: Minimum -8 at x = 1, x = 3

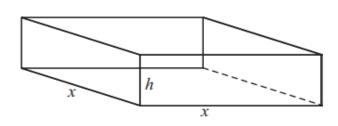
Maximum -7 at x = 2

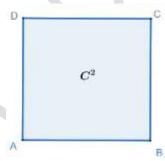
- Show that of all the rectangles of given area the square has the smallest perimeter. 46
- 47 An open tank with a square base and vertical sides is to be constructed from a metal sheet so as to hold a given quantity of water. Show that the cost of the material will be the least when the depth of the tank is half of its width.
- Show that the height of a closed right circular cylinder of given surface and maximum volume is equal to 48 the diameter of the base.
- Prove that, the radius of the right circular cylinder of 49 greatest curved surface which can be inscribed in a given cone, is half of that of the cone.



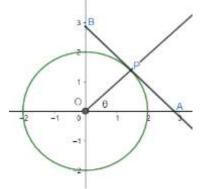
- 50 Of all the closed right circular cylindrical cans of volume 128π cm³, find the dimensions of the can which has the minimum surface area.
- Show that the right circular cylinder of given volume open at the top has minimum total surface area, 51 provided its height is equal to radius of its base.
 - Show that the semi-vertical angle of the cone of maximum volume and of given slant height is $\tan^{-1} \sqrt{2}$
- Show that the height of the cylinder of maximum volume that can be inscribed in a sphere of radius R is 52

- $\frac{2R}{\sqrt{3}}$. Also find the maximum volume.
- A square piece of tin of side 18 cm is to be made into a box without top by cutting a square from each corner and folding up the flaps to form a box. What should be the side of the square to be cut off so that the volume of the box is maximum? Also find the maximum volume
- A wire of length 36 cm is cut into two pieces. One of the pieces is turned in the form of a square and the other in the form of an equilateral triangle. Find the length of each piece so that the sum of the areas of the two be minimum.
- A rectangle is inscribed in a semi-circle of radius r with one of its sides on the diameter of the semi-circle find the dimensions of the rectangle, so that its area is maximum. Also find the maximum area.
- A window has the shape of a rectangle surmounted by an equilateral triangle. If the perimeter of the window is 12 m, find the dimensions of the rectangle that will produce the largest area of the window.
- An open box with a square base is to be made of a given quantity of metal sheet of area c^2 . Show that the maximum volume of the box is $\frac{c^3}{6\sqrt{3}}$.

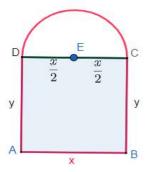




- If the length of three sides of a trapezium other than the base are equal to 10 cm, then find the maximum area of the trapezium.
- Tangent to the circle $x^2 + y^2 = 4$ at any point on it in the first quadrant makes intercepts OA and OB on X and Y-axes respectively, Y0 being the centre of the circle. Find the minimum value of Y0 or Y1.



- 60 Show that the rectangle of maximum area that can be inscribed in a circle is a square.
- Show that the altitude of a right circular cone of maximum volume that can be inscribed in a sphere of radius *R* is $\frac{4R}{3}$
- A window is in the form of a rectangle surmounted by a semicircular opening. The total perimeter of the window is 10 metres. Find the dimensions of the window so as to admit maximum light through the whole opening.



ANS: $\frac{20}{\pi+4}$, $\frac{10}{\pi+4}$

63 HOME WORK

- 1. A wire of length 28 metres is to be cut into two pieces. One of the pieces is to be made into a circle and the other into a square. What should be the length of the two pieces so that the combined area of the square and the circle is minimum?

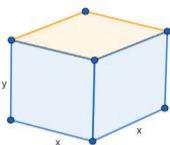
 ANS: $\frac{28\pi}{4+\pi}$, $\frac{112}{4+\pi}$
- 2. Show that the volume of the greatest cylinder which can be inscribed in a cone of height h and semi-vertical angle 30° is $\frac{4\pi}{81}h^3$.
- 3. Find the volume of the largest cylinder that can be inscribed in a sphere of radius r.
- 4. A tank with rectangular base and rectangular sides, open at the top is to be constructed so that its depth is 2 m and volume is 8 m^3 . If building of tank costs Rs. 70 per sq. metre for the base and Rs. 45 per sq. metre for sides, what is the cost of least expensive tank?

ANS: Rs. 1000

- 5. Show that height of the cylinder of greatest volume which can be inscribed in a right circular cone of height h and semi vertical angle α is one-third that of the cone and the greatest volume of cylinder is $\frac{4}{27}\pi h^3 t a n^2 \alpha.$
- 6. Show that the altitude of the right circular cone of maximum volume that can be inscribed in a sphere of radius *R* is $\frac{4R}{3}$.
- 7. Show that the right-circular cone of least curved surface and given volume has an altitude equal to $\sqrt{2}$ times the radius of the base.
- 8. Show that of all the rectangles of given area, the square has the smallest perimeter.
- If the tangent to the curve $y = x^3 + ax + b$, at P(1, -6) is parallel to the line y x = 5, find the values of and b.
- 65 Find the local maximum and local minimum values of the function

$$f(x) = \sin x + \frac{1}{2}\cos 2x, \ \ 0 < x < \frac{\pi}{2}$$

An open rectangular tank, with a square base and vertical sides, is to be constructed of metal sheet to hold a given quantity of water as shown below:



Based on the above information answer the following

i) If x represents the side of the square base and y represents the depth of the tank, then the volume V of

a) <i>x</i>	b) $\frac{x}{2}$	x d) x	2x
A closed right circular cylinder has volume 2156 cubic units. What should be the radius of the base so that its total surface area may be minimum?			
A window is in the form of a rectangle surmounted by a semicircular opening. The total perimeter P of the window is 10 metres. We have to find the dimensions of the window so as to admit maximum light through the whole opening. Based on the above information answer the following: i) Let x be side of a rectangle and r be the radius of semicircle. Then Perimeter $P = $ a) $4x + 2r + \pi r$ b) $2x + 2r + \pi r$ c) $2x + 4r + \pi r$ d) $2x + r + 2\pi r$			
ii) To admit maximum possible light, area of window should be maximum. Let A be the area of the window, then a) $A = \pi r^2 + 2xr$ b) $A = \frac{1}{2}\pi r^2 + 4xr$ c) $A = \frac{1}{2}\pi r^2 + 2xr$ d) $A = \frac{1}{2}\pi r^2 + xr$			
iii) If $\frac{dA}{dr} = 0 \implies r = 0$ a) $\frac{10}{4+\pi}$ iv) Dimensions of the		c) $\frac{20}{4+\pi}$	d) $\frac{10}{4-\pi}$
a) $\frac{10}{4+\pi}$, $\frac{5}{4+\pi}$ v) $\frac{d^2A}{dr^2} = $	b) $\frac{20}{4+\pi}$, $\frac{5}{4+\pi}$ b) $-(4+\pi)$	c) $\frac{20}{4-\pi}$, $\frac{5}{4-\pi}$	d) $\frac{10}{4+\pi}$, $\frac{20}{4+\pi}$
a) $(4 + \pi)$	b) $-(4 + \pi)$	c) $(4-\pi)$	d) $-(4-\pi)$

d) $S = x^2 + 4xy$

the tank in terms of x and y is _____ a) $V = x^2y$ b) V = xy c) $V = x^2y^2$ d) xy^2

ii) Let S be the area of the metal sheet required to construct the tank, then

iii) The area of the metal sheet S expressed as a function of x is _____

v) Cost of the metal will be least when the depth (y) is _____.

a) $S = x^2 + \frac{x}{4V}$ b) $S = 2x^2 + \frac{4V}{x}$ c) $S = x^2 + \frac{4V}{x}$ d) $S = 2x^2 + \frac{4V}{x^2}$ iv) The area of the metal sheet S will be minimum when $x = \frac{1}{2}$ a) $V^{\frac{1}{3}}$ b) $V^{\frac{2}{3}}$ c) $(2V)^{\frac{1}{3}}$ d) 2V

a) $S = 2x^2 + xy$ b) $S = x^2 + xy$ c) $S = 5x^2$

67

68