QUADRATIC EQUATIONS

CLASS X (BASIC & STANDARD)

SUJITHKUMAR KP

	i) Quadratic equation: A quadratic equation in the variable x is of the form $ax^2 + bx + c = 0$ where a, b, c are real numbers and $a \neq 0$.						
	ii) Roots of a quadratic equation: A real number α is said to be a root of the quadratic equation $ax^2 + bx + c = 0$, if $a\alpha^2 + b\alpha + c = 0$.						
	iii) The roots of the quadratic equation $ax^2 + bx + c = 0$ are the same as the zeroes of the quadratic polynomial $ax^2 + bx + c$						
	iv) Quadratic Formula: If $b^2 - 4\alpha c \ge 0$, then the real roots of the quadratic equation						
	$ax^{2} + bx + c = 0$ are given by $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$.						
	The expression $b^2 - 4ac$ is called the discriminant of the quadratic equation.						
	v) A quadratic equation $ax^2 + bx + c = 0$ has						
	i) two distinct real roots if $b^2 - 4ac > 0$						
	$ii)$ two equal real roots if $b^2 - 4ac = 0$						
	iii) no real roots if $b^2 - 4ac < 0$. (Complex numbers)						
	iv) Rational roots if $b^2 - 4ac$ is a perfect square.						
	PART -1						
1.	If the roots of the equation $ax^2 = bx + c = 0$, $a \ne 0$ are real and equal, which of the following relation is true? (CBSE 2024)						
	(A) $a = \frac{b^2}{c}$ (B) $b^2 = ac$ (C) $ac = \frac{b^2}{4}$ (D) $c = \frac{b^2}{a}$ The discriminant of the quadratic equation $2x^2 - 5x - 3 = 0$ is (CBSE 2023) (A) 1 (B) 19 (C) 49 (D) 7						
2.	The discriminant of the quadratic equation $2x^2 - 5x - 3 = 0$ is (CBSE 2023)						
_							
3.	Which of the following equations is a quadratic equation? (CBSE 2025)						
	(A) $x^2 + 1 = (x - 1)^2$ (B) $(x + \sqrt{x})^2 = 2x\sqrt{x}$ (C) $x^3 + 3x^2 = (x + 1)^3$ (D) $(x + 1)(x - 1) = (x + 1)^2$						
	(C) $x^3 + 3x^2 = (x+1)^3$ (D) $(x+1)(x-1) = (x+1)^2$						
4.	If $x^2 + bx + b = 0$ has two real and distinct roots, then the value of b can be (CBSE 2025)						
	(A) 0 (B) 4 (C) 3 (D) -3						
5.	The quadratic equation $4x^2 + 6x + 3 = 0$ has						
	(A) two distinct real roots (B) two equal real roots						
_	(C) no real roots (D) more than 2 real roots						
6.	For what value of k, are the roots of the quadratic equation $3x^2 + 2kx + 27 = 0$ real and equal $3x^2 + 2kx + 27 = 0$						
	(A) ± 9 (B) 9 (C) 3 (D) 12						
7.	If the roots of $ax^2 + bx + c = 0$ are equal in magnitude but opposite in sign, then (A) $a = 0$ (B) $b = 0$ (C) $c = 0$ (D) none of these						
8.	If the difference of the roots of the equation $x^2 - bx + c = 0$ be 1, then						
	(A) $b^2 - 4c + 1 = 0$ (B) $b^2 + 4c = 0$ (C) $b^2 - 4c - 1 = 0$ (D) $b^2 - 4c = 0$						
9.	Write the nature of roots of quadratic equation $4x^2 + 4\sqrt{3}x + 3 = 0$.						
	(A). Distinct non real roots (B) real and unequal roots (C) real and equal roots (D) none						
10.	Which one of the following equations has no real roots?						
	(A) $x^2 - 4x + 3\sqrt{2}$ (B) $x^2 + 4x - 3\sqrt{2}$ (C) $x^2 - 4x - 3\sqrt{2}$ (D) $3x^2 + 4\sqrt{3}x + 4$						
11.	Find the value of k for which the equation $x^2 - 4x + k = 0$ has equal roots.						

(C) 4

12. The nature of roots of the quadratic equation $4x^2 + 4\sqrt{3}x + 3 = 0$ is _____.

1.

2.

9.

(A) - 4

(B) 1

	(A) real and equal r(C) no real roots	roots	, ,	real and distinct none of these	et roots	
13.	The discriminant (Γ (A) -32	O) of the quadratic equ (B) 4	nation $\sqrt{3}x^2$ (C) $\sqrt{32}$		3 is D) 32	
14.		roots of the quadratic				(D)
15.	The roots of $ax^2 +$	eal roots (B) real $b + b + c = 0, a \neq$ (B) $D < 0$	0 are real a	nd unequal. Wh	nat is value of D?	(D) none
16.	` ′	of two numbers a and	, ,	* *		ose roots are a
	(A) $x^2 + 16x + 9 =$	0 (B) $x^2 - 16x + 9$	$=0 (C) x^2$	2 - 16x - 9 = 0	(D) $x^2 - 9x +$	16 = 0
17.		x + k = 0 where k is				
	(A) $1, \frac{1}{2}$	(B) 1, $\frac{k}{2}$	(C) k, $\frac{\kappa}{2}$		(D) $\frac{\kappa}{2}$, $\frac{\kappa}{2}$	
18.	If 2 is a root of the	equation $x^2 + bx +$	-12 = 0,	find the value o	f (B)	
	` ′	(B)-4	` '	, ,	8	
19.		n = 0, find k when $x = 0$		= 3.	4	
	(A) 15	•	(C) 14		(D) $\frac{4}{15}$	
20.	Find the discrimina	nt of the quadratic equ				
	(A) 8	(B) ±8	(C) 64	(D) $\sqrt{3}$	3	
21.		$t \operatorname{does}(k-12) x^2 + 2t$				
	` ′	(B) $k = 14, 12$,	<i>'</i>	, ,	
22.	then find the value	,				osite in sign
•	` ′	(B) $b = 1$	` ′	` '		
23.		+ bx + c = 0 are	=			С
24		(B) 4			c=2	
24.		ollowing equations has $\mathbb{R}^2 \times \mathbb{R}^2 = \mathbb{R}^2 \times \mathbb{R}^2 = \mathbb{R}^2$			$-0.0)2x^{2}.6x$	2 - 0
25.		B) $x^2 + 3x - 12 =$ equation $ax^2 + 2bx +$				
					4. 4	
26		B) $\frac{-2c}{\sqrt{ab}}$	•	· ·		
26.	If $\frac{1}{2}$ is a root of the	e equation $x^2 + kx -$	$\frac{3}{4} = 0$ then	the value of k i	S	
	A) 2	B) -2	C) $\frac{1}{2}$	D) $\frac{1}{4}$		
27.		ving equations has the				
	A) $2x^2 - 3x + 6 =$	0 B) $-x^2 + 3x - 3$	= 0 C)	$\sqrt{2}x^2 - \frac{3}{\sqrt{2}}x +$	$-6 = 0$ D) $3x^2 -$	3x + 3 = 0
28.		which the quadratic eq				
	A) 0 only		C) 8 only	D) 0,		
29.	The quadratic equat	tion $2x^2 - \sqrt{5}x + 1$	= 0 has			
	= =	roots (B) two equal		(C) no real ro	oots (D) more that	n 2 real roots

	A) 4	B) 8	C) $\frac{1}{2}$	D) 1						
31.	Find the value of p A) $p = 3$		of the equation $px^2 - C$ p = -2	$2\sqrt{5}px + 15 = 0$ has two equal roots. D) $p = 0, 3$						
32.		of quadratic equation (B) 0, -1		= 0, then its roots are (D) 0, 2						
33.	3. If $3x^2 - 2kx + m = 0$, find k when $x = 2$ and $m = 3$.									
	A) 2	B) $-\frac{5}{4}$	C) $-\frac{15}{4}$	D) $\frac{15}{4}$						
34.	and			ots, then the values of m are						
35.			C) 2 and -1 c equation $9x^2 - 6x -$							
	A) two unequal rea	l roots	B) equal and real roo							
36	C) no real roots The hypotenuse of		D) none of these	shortest side. If the third side is 7 m						
20.			gest side of the triang							
27	A) 12	*	C) 16	D) 17						
3/.	A) 82	int (D) of quadratic e B) 84 C	equation $4x^2 - 2x - 5$ = 84	= 0 D) 80						
20	,	,	,	,						
38.			solution of the equat C) 3	ion $kx^2 + \sqrt{2}x - 4 = 0$? D) 4						
39.	Which are the follo A) $(x-2)(x+5) =$ C) $x^3 - 3x^2 + 5x = ($		B) $x^2 -$	$-3x + 5 = (x + 5)^{2}$ -7) $x = 3x^{2} - 5$						
40.	If the difference of	the roots of the equa	$tion x^2 - bx + c =$	0 be 1, then						
				$= 0 (D) b^2 - 4c = 0$						
41.	Which of the follow A) 2	wing is a solution of t B) 5	the equation $x^2 - 6x + C$	-5 = 0? D) 3						
42.	Find the value (s) o	of p for which the qua	dratic equation given	a as $(p+4)x^2 - (p+1)x + 1 = 0$ has						
43.			s of the equation(s) s -5x + 6k = 0, the value							
				x - 4 = 0 has rational roots, is						
45.	(A) $\pm 2\sqrt{2}$ (B) 2 (C) ± 2 (D) $\sqrt{2}$. If $(1-p)$ is a root of the equation $x^2 + px + 1 - p = 0$, then roots are									
	5. If α , β are roots of the equation $x^2 + 5x + 5 = 0$, then equation whose roots are $\alpha + 1$ and $\beta + 1$ is (a) $x^2 + 5x - 5 = 0$ (b) $x^2 + 3x + 5 = 0$ (c) $x^2 + 3x + 1 = 0$ (d) $x^2 - 3x + 1 = 0$ 7. Which of the following equations has no real roots?									
Τ/.	(a) $x^2 - 4x + 3\sqrt{2} =$	=0 (1	b) $x^2 + 4x - 3\sqrt{2} = 0$							
	(c) $x^2 - 4x - 3\sqrt{2} =$	= 0	$3x^2 + 4\sqrt{3}x + 4 = 0$	0						

30. Find the least positive value of k for which $x^2 + kx + 16 = 0$ has real roots.

48. If α , β are roots of $x^2 + 5x + a = 0$ and $2\alpha + 5\beta = -1$, then a is equal to	
49. α , β are roots of the equation $(a + 1)x^2 + (2a + 3)x + (3a + 4) = 0$. If α . $\beta = 2$, then $\alpha + \beta = $	
50. If the difference of the roots of the equation $x^2 - bx + c = 0$ be 1, then	

51. If the roots of
$$ax^2 + bx + c = 0$$
 are equal in magnitude but opposite in sign, then
(a) $a = 0$ (b) $b = 0$ (c) $c = 0$ (d) none of these

52. If
$$\alpha + \beta = 4$$
 and $\alpha^3 + \beta^3 = 44$, then α , β are the roots of the equation
(a) $2x^2 - 7x - 7 = 0$
(b) $3x^2 + 8x + 12 = 0$
(c) $3x^2 - 12x + 5 = 0$
(d) none of these

55. If the equation
$$x^2 - (2 + m)x + (-m^2 - 4m - 4) = 0$$
 has coincident roots, then (a) $m = 0$, $m = 1$ (b) $m = 2$, $m = 2$ (c) $m = -2$, $m = -2$ (d) $m = 6$, $m = 1$

56. If the roots of the equation $12x^2 + mx + 5 = 0$ are in the ratio 3 : 2, then m equals .

57. Is
$$x = -2$$
 a solution of the equation $x^2 - 2x + 8 = 0$?

(a) $b^2 - 4c + 1 = 0$ (b) $b^2 + 4c = 0$ (c) $b^2 - 4c - 1 = 0$ (d) $b^2 - 4c = 0$

58. Find the roots/solution of the quadratic equation by factorisation: $x^2 - 9x + 20 = 0$

59. Solve the following quadratic equation by factorisation: $\sqrt{3} x^2 + 10x + 7\sqrt{3} = 0$

60. Write the nature of roots of quadratic equation : $4x^2 + 4\sqrt{3}x + 3 = 0$.

61. Write the nature of roots of the quadratic equation $9x^2 - 6x - 2 = 0$.

62. Write the nature of roots of quadratic equation : $4x^2 + 6x + 3 = 0$

63. If $2x^2 - (2 + k)x + k = 0$ where k is a real number, find the roots of the equation.

64. Is x = -4 a solution of the equation $2x^2 + 5x - 12 = 0$.

65. If 2 is a root of the equation $x^2 + bx + 12 = 0$, find the value of b.

66. If $3x^2 - 2kx + m = 0$, find k when x = 2 and m = 3.

67. Find discriminant of the quadratic equation: $4x^2 - 2x^2 + 3 = 0$.

68. Find discriminant of the quadratic equation: $4x^2 - 12x + 9 = 0$.

69. Find discriminant of the quadratic equation: $5x^2 + 5x + 6 = 0$.

- 70. For what value of k does $(k-12) x^2 + 2(k-12)x + 2 = 0$ have equal roots?
- 71. A quadratic equation $ax^2 + bx + c = 0$, $a \ne 0$ has equal roots. What is the value of D?
- 72. If two roots of $2x^2 + bx + c = 0$ are reciprocal of each other than find the value of c.
- 73. Two numbers differ by 3 and their product is 504. Find the numbers.
- 74. Solve the following equation using by quadratic formula: $x^2 + 5x + 5 = 0$.
- 75. Solve the following equation by using quadratic formula: $9x^2 12x + 4 = 0$.
- 76. Find the value of p so that the quadratic equation p(x(x-3)) + 9 = 0 has two equal roots.
- 77. If the roots of quadratic equation $ax^2 + bx + c = 0$ are equal in magnitude but opposite in sign then find the value of b.
- 78. Write the discriminant of the following quadratic equation : (i) $2x^2 5x + 3 = 0$
- 79. Write the discriminant of the following quadratic equation (ii) $x^2 + 2x + 4 = 0$
- 80. Write the discriminant of iii) (x 1)(2x 1) = 0
- 81. Write the discriminant of (iv) $x^2 5x + 1 = 0$
- 82. Using quadratic formula solve the following quadratic equations:

(i)
$$2x^2 - 2x + 1 = 0$$

(ii)
$$2x^2 - 11x + 9 = 0$$

(iii)
$$5x^2 - 9x - 14 = 0$$

83. Using quadratic formula solve the following quadratic equation:

i)
$$5x^2 - 18x - 8 = 0$$
 ii) $13x^2 + 9(x + 1) - (2x + 3)(x + 2) = 6$ iii) $x^2 + 3x - 28 = 0$

84. Determine the nature of the roots of the following quadratic equations:

(i)
$$2x^2 - 3x + 5 = 0$$
 (ii) $2x^2 - 6x + 3 = 0$ (iii) $(3/5)x^2 - (2/3) + 1 = 0$ (iv) $3x^2 - 4\sqrt{3}x + 4 = 0$

85. Find the values of k for which the roots are real and equal in each of the following equations:

(i)
$$kx^2 + 4x + 1 = 0$$
 (ii) $kx^2 - 2\sqrt{5}x + 4 = 0$ (iii) $4x^2 - 3kx + 1 = 0$

iv)
$$x^2 - 2(5 + 2k)x + 3(7 + 10k) = 0$$

86. In the following, determine the set of values of k for which the given quadratic equation has real roots:

(i)
$$2 x^2 + 3x + k = 0$$
 (ii) $2 x^2 + x + k = 0$

87. Find the values of k for which the following equations have real and equal roots

(i)
$$x^2 - 2(k+1)x + k^2 = 0$$
 (ii) $k^2 x^2 - 2(2k-1)x + 4 = 0$

88. Find the values of k for which the given quadratic equation has real and distinct roots.

(i) k
$$x^2 + 2x + 1 = 0$$
 ii) k $x^2 + 6x + 1 = 0$