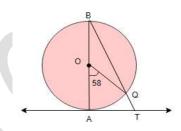
CLASS X (2025-26)

SUJITHKUMAR KP 15-8-25

SECTION- A

In figure, AB is the diameter of a circle with centre O and AT is a tangent. If \angle AOQ = 58°, find \angle ATQ.

- A) 51°
- B) 58°
- C) 71°
- D) 61°



ANS: $\angle ABQ = \frac{1}{2} \times 58^{\circ} = 29^{\circ}$

In Δ ABT,

 $\angle BAT + \angle ABT + \angle ATB = 180^{\circ}$

 $90^{\circ} + 29^{\circ} + \angle ATB = 180^{\circ}$

 $\angle ATB = 61^{\circ}$ as $\angle ATB = \angle ATQ \Rightarrow \angle ATQ = 61^{\circ}$

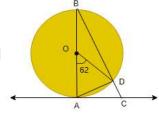
In the figure, AB is the diameter of a circle with centre O and AC is a tangent. If \angle AOD = 62°, find \angle ACD.

(A) 51°

 $(B) 60^{\circ}$

(C) 59°

(D) 61°



ANS: (C) 59°

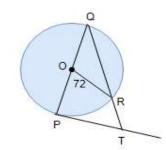
In the given figure, PQ is a diameter of a circle with centre O and PT is a tangent at P, QT meets the circle at R. If $\angle POR = 72^{\circ}$ then $\angle PTR =$

A) 52°

(B) 60°

(C) 54°

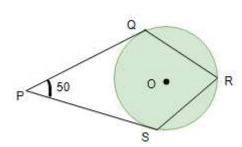
(D) 64°



ANS: 54°

In the figure, O is the centre of the circle and PQ and PS are tangents to the circle at points Q and S respectively.

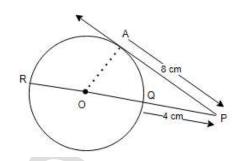
- $\angle QRS = \underline{\hspace{1cm}}$
- A) 65°
- B) 130°
- C) 55°
- D) 100°



ANS: A) 65°

- 5 In the figure, O is the centre of the circle and PA is tangent to the circle from the point P. PQR passes through the centre of the circle O. If PA = 8 cm, PQ = 4 cm, find the radius of the circle.
 - A) 3 cm

- B) 6 cm C) 12 cm D) 10 cm



ANS: Let
$$OA = r$$
 cm

$$OA^2 + AP^2 = OP^2$$

$$r^2 + 8^2 = (r+4)^2$$

$$r^2 + 8^2 = r^2 + 4^2 + 8r$$

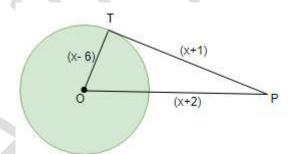
 $64 - 16 = 8r \Rightarrow r = 6$. The radius of the circle 6 cm.

- 6 In the below figure, find the area of Δ OTP.
 - A) $30 cm^2$

(B) $60 cm^2$

(C) $15 cm^2$

(D) $40 cm^2$



ANS:
$$(x+1)^2 + (x-6)^2 = (x+2)^2$$

ANS:
$$(x+1)^2 + (x-6)^2 = (x+2)^2$$

 $x^2 + 1 + 2x + x^2 + 36 - 12x = x^2 + 4 + 4x$

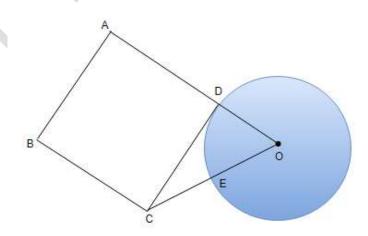
$$x^2 - 14x + 33 = 0$$

$$(x-3)(x-11) = 0$$

$$x = 11, x \neq 3$$
 sides are 5, 12,13

Area =
$$\frac{1}{2} \times 5 \times 12 = 30 \ cm^2$$

ABCD is a square, CD is a tangent to the circle with centre O. if OD = CE, the find the ratio of the area of circle to that of square.



ANS: D) $\frac{\pi}{3}$

Tangents AP and AQ are drawn to a circle with centre O 8 from external point A then _____

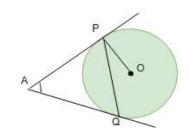
A)
$$\angle PAQ = 2 \angle OPQ$$

B)
$$\angle PAQ = \angle OPQ$$

C)
$$\angle PQA = \angle OPA$$

D)
$$\angle PQA = 2 \angle OPA$$

A)
$$\angle PAQ = 2 \angle OPQ$$

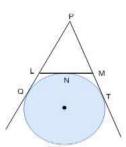


- 9 The distance between two parallel tangents of a circle of radius 10 cm is _____
 - A) 20 cm
- B) 10 cm
- C) 15 cm

D) 5 cm

ANS: A) 20 cm

- 10 In the figure, If PQ = 30 cm, then find the perimeter of Δ *PLM*.
 - A) 30 cm B) 60 cm C) 40 cm
- D) 35 cm



ANS: PQ = PT

$$PL + LQ = PM + MT$$

$$\Rightarrow PL + LN = PM + MN$$

perimeter of $\triangle PLM = PL + LN + MN + PM = PQ + PT = 2 \times PQ = 60cm$.

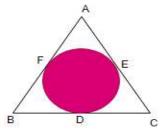
11 The two tangents from an external point P to a circle with centre O are PA and PB. If \angle APB = x° , what is the value of $\angle AOB$?

B)
$$(180 - x)^{\circ}$$

D)
$$(90 - x)^{\circ}$$

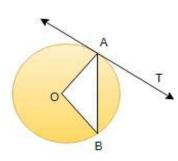
ANS: B) $(180 - x)^{\circ}$

- 12 A triangle ABC is drawn to circumscribe a circle. If AB = 13 cm, BC = 14 cm and AE = 7 cm, then AC is equal to
 - (A) 12 cm
- (B) 15 cm
- (C) 11 cm
- (D) 16 cm



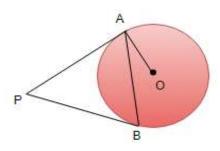
ANS: (B) 15 cm

- In given figure, O is the centre of the circle, AB is a chord 13 and AT is the tangent at A. If \angle AOB = 100° then find $\angle BAT$.
 - A) 100°
- B) 40°
- $C)50^{\circ}$
- D) 90°



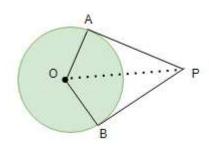
ANS: C) 50°

- 14 In the figure PA and PB are tangents to the circle with centre O. If $\angle APB = 70^{\circ}$, then $\angle OAB$ is _____
 - A) 35°
- B) 70°
- C) 30°
- D) 15°



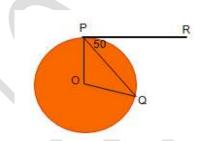
ANS: A) 35°

- If angle between two tangents drawn from a point to a circle 15 of radius a and centre O is 60° . then OP = ____
 - A) $\sqrt{3}a$
- B) $\frac{a}{\sqrt{3}}$ C) $\frac{2a}{\sqrt{3}}$ D) $\frac{a}{2}$



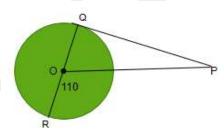
ANS: $\frac{2a}{\sqrt{3}}$

- In figure if O is centre of a circle, PQ is a chord and the 16 tangent PR at P makes an angle of 50° with PQ, then ∠POQ is equal
 - A) 100°
- B) 80°
- C) 90°
- D) 75°



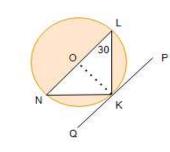
ANS: A) 100°

- PQ is a tangent drawn from a point P to a circle with centre 17 O and QOR is a diameter of the circle such that \angle POR = 110°. Find ∠ OPQ.
 - A) 10°
- B) 20°
- C) 30°
- D) 25°



ANS: 20°

- In Figure, O is the centre of the circle and LN is a diameter. 18 If PQ is a tangent to the circle at K and \angle KLN = 30°, find \angle PKL.
 - A) 30°
- B) 20°
- $C) 60^{\circ}$
- D) 25°



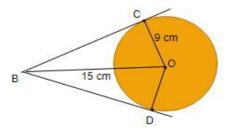
ANS: 60°

- In the figure, BC and BD are tangents to the circle with 19 centre O and radius 9 cm. If OP = 15 cm, then the length of $(BC + BD) = \underline{\hspace{1cm}} cm$
 - (A) 18

(B) 12

(C) 24

(D) 21

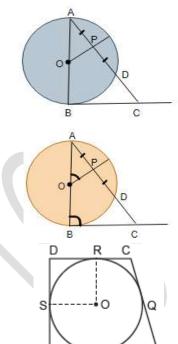


ANS: (C) 24

- In the figure, O is the centre of the circle. BC is a tangent to the circle at B. If OP bisects the chord AD and $\angle AOP = 60^{\circ}$, Then find $\angle C$.
 - $A) 60^{\circ}$
- B) 30°
- C) 45°
- D) 25°

ANS: OP bisects the chord AD \Rightarrow $OP \perp AD$ $\angle OPA = 90^{\circ}$ and $\angle AOP = 60^{\circ} \Rightarrow \angle A = 30^{\circ}$ In $\triangle ABC$, $\angle C = 180^{\circ} - 120^{\circ} = 60^{\circ}$

- A quadrilateral ABCD is drawn so that $\angle D = 90^{\circ}$, BC = 38 cm and CD = 25 cm. A circle is inscribed in the quadrilateral and it touches the side AB, BC, CD and DA at P, Q, R and S respectively. If BP = 27 cm, find the radius of the inscribed circle.
 - A) 100°
- B) 105°
- C) 130°
- D)1 25°



ANS: To find: $\angle 1 + \angle 2$

Solution: OQ is perpendicular to the tangent PQ. (radius is perpendicular to the tangent at the point of contact).

In \triangle OPQ, \angle POR = \angle 1 + \angle RQP (external angle is equal to the sum of interior opposite angles)

$$\Rightarrow 130^{\circ} = \angle 1 + 90^{\circ} \Rightarrow \angle 1 = 40^{\circ} \dots (i)$$

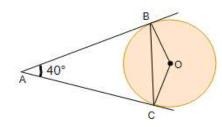
 \angle ROT is the angle subtended by arc RT at centre and \angle RST is the angle subtended by same arc at point S on circumference.

$$\angle 2 = \frac{1}{2} \times \angle ROT = \frac{1}{2} \times 130^{\circ} = 65^{\circ}$$
(ii)

Adding (i) and (ii), we get $\angle 1 + \angle 2 = 40^{\circ} + 65^{\circ} = 105^{\circ}$

In the given figure, AB and AC are tangents to the circle with centre O such that \angle BAC = 40° , then \angle BOC is equal to ____.

- B) 120°
- C) 140°
- D) 150°



ANS: In quadrilateral ABOC

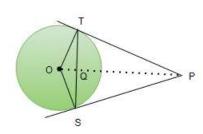
$$ABO + \angle BOC + \angle OCA + \angle BAC = 360^{\circ}$$

$$\Rightarrow$$
 90° + \angle BOC + 90° + 40° = 360°

$$\Rightarrow \angle BOC = 360^{\circ} - 220^{\circ} = 140^{\circ}$$

In figure, from an external point P, two tangents PT and PS are drawn to a circle with centre O and radius r. If $OP = 2r \angle OTS = \angle OST = _____$

- $B) 40^{\circ}$
- C) 30°
- D) 25°



ANS: In
$$\triangle$$
 OTS , OT = OS [radii]
 $\Rightarrow \angle$ OTS = \angle OST(i)
In right \triangle OTP , $\frac{OT}{OP}$ = $\sin \angle$ TPO
 $\Rightarrow \frac{r}{2r} = \sin \angle$ TPO
 $\Rightarrow \sin \angle$ TPO = $\frac{1}{2}$ $\Rightarrow \angle$ TPO = 30°
Similarly \angle OPS = 30°

24 A circle is inscribed in a \triangle ABC having sides 16 cm, 20 cm and 24 cm as shown in figure. Find AD, BE and CF

ANS: Let AD = AF = x [Tangents from external point are equal]

$$BD = BE = y \text{ and } CE = CF = z$$

According to the question,

$$AB = x + y = 24 \text{ cm} ... (i)$$

$$BC = y + z = 16 \text{ cm} ... (ii)$$

$$AC = x + z = 20 \text{ cm} ...(iii)$$

Subtracting (iii) from (i), we get

$$y - z = 4 ... (iv)$$

Adding (ii) and (iv), we get

$$2y = 20 \Rightarrow y = 10 cm$$
.

Substituting the value of y in (ii) and (i) we get

$$z = 6 \text{ cm}; x = 14 \text{ cm}$$

$$AD = 14$$
 cm, $BE = 10$ cm and $CF = 6$ cm.

In figure, a triangle ABC is drawn to circumscribe a circle of radius 3 cm, such that the segments BD and DC are respectively of lengths 6 cm and 9 cm. If the area of Δ ABC is 54 cm², then find the lengths of sides AB and AC.

Let
$$AF = x \text{ cm}$$

$$AF = AE = x$$
 [tangents from A]

Also
$$BD = BF = 6 \text{ cm}$$
 and $CD = CE = 9 \text{ cm}$

$$AB = (6 + x) \text{ cm} \text{ and } AC = (9 + x) \text{ cm}$$

Area \triangle ABC = Area \square BOC + Area \square COA + Area \square AOB

$$\Rightarrow$$
 54 = $\frac{1}{2}$ BC × OD + $\frac{1}{2}$ AC × OE + $\frac{1}{2}$ AB × OF

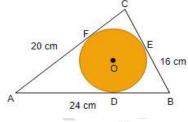
$$\Rightarrow$$
 54 × 2 = 15 × 3 + (6 + x) × 3 + (9 + x) × 3

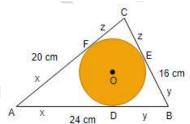
$$108 = 45 + 18 + 3x + 27 + 3x$$

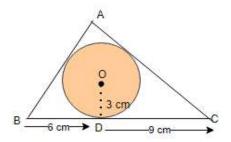
$$6x = 18 \implies x = 3$$

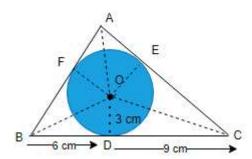
$$\Rightarrow$$
 AB = 6 + x = 6 + 3 = 9 cm and AC = 9 + x = 9 + 3 =

⇒
$$\angle$$
 TPS = 30° + 30° = 60°
Also \angle TPS + \angle SOT = 180°
 \angle SOT = 120°
In \triangle SOT,
 \angle SOT + \angle OTS + \angle OST = 180°
120° + 2 \angle OTS = 180°
⇒ \angle OTS = 30° ...(*ii*)
From (*i*) and (*ii*)
 \angle OTS = \angle OST = 30°



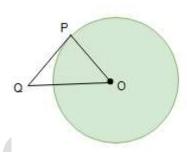






12 cm

PQ is a tangent to a circle with centre O at point P. If $\triangle OPQ$ is isosceles triangle, then find $\triangle OQP$.

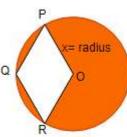


ANS: $\triangle OPQ$ is isosceles triangle, $\angle Q = \angle O$ and QP is tangent $\Rightarrow \angle P = 90^{\circ}$

$$\angle Q + \angle O + \angle P = 180^{\circ}$$

$$\Rightarrow 2 \angle Q = 90^{\circ} \Rightarrow \angle OQP = 45^{\circ}$$

In the given figure, OPQR is a rhombus, three of whose vertices lie on a circle with centre O. If the area of the rhombus is $32\sqrt{3}$ cm², find the radius of the circle.



Side of the rhombus = radius of the circle

$$OP = OQ = PQ = x = OR = QR$$

 Δ ORQ and Δ OPQ are equilateral triangles

Area of the equilateral triangle OPQ = $\frac{\sqrt{3}}{4} a^2$

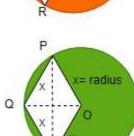
Area of the equilateral $\triangle OPQ = \frac{\sqrt{3}}{4} x^2$

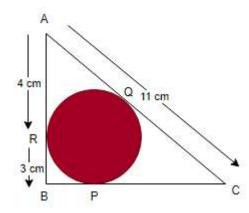
Area of the rhombus = $2 \text{ ar } (\Delta OPQ)$

$$2 \times \frac{\sqrt{3}}{4} x^2 = \frac{\sqrt{3}}{2} x^2 = 32\sqrt{3}$$

$$x^2 = 64 \text{ cm}^2$$
 $x = 8 \text{ cm}$

In figure, Δ ABC is circumscribing a circle. Find the length of BC.





ANS:
$$AR = 4 \text{ cm}$$

Also,
$$AR = AQ \Rightarrow AQ = 4 \text{ cm}$$

Now,
$$QC = AC - AQ = 11 \text{ cm} - 4 \text{ cm} = 7 \text{ cm} ...(i)$$

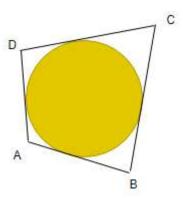
Also,
$$BP = BR$$

$$BP = 3 \text{ cm} \text{ and } PC = QC$$

$$PC = 7 \text{ cm [From (i)]}$$

$$BC = BP + PC = 3 \text{ cm} + 7 \text{ cm} = 10 \text{ cm}$$

29 In figure, a circle touches all the four sides of a quadrilateral ABCD whose sides are AB = 6 cm, BC = 9 cm and CD = 8 cm. Find the length of side AD.



If a circle touches all the four sides of quadrilateral ABCD, then ANS:

$$AB + CD = AD + BC$$

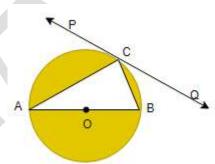
$$6 + 8 = AD + 9$$

$$\Rightarrow$$
14 = AD + 9

$$\Rightarrow$$
14 – 9 = AD

$$\Rightarrow$$
AD = 5 cm

30 In figure, PQ is a tangent at a point C to a circle with centre O. If AB is a diameter and \angle CAB = 30°, find \angle PCA.



In \triangle AOC,

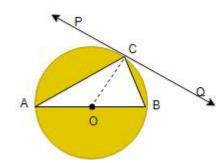
$$AO = CO [Radii]$$

$$\angle$$
 OCA = \angle CAB = 30°

$$OC \perp PQ$$
, $\Rightarrow \angle OCP = 90^{\circ}$

$$\Rightarrow$$
 \angle PCA + \angle OCA = 90°

$$\Rightarrow$$
 \angle PCA + 30° = 90° \Rightarrow \angle PCA = 60°



31 Tangents PA and PB are drawn from an external point P to two concentric circles with centre O and radius 8 cm and 5 cm respectively, as shown in the figure. If AP = 15cm, then BP = ____

A)
$$2\sqrt{66}$$

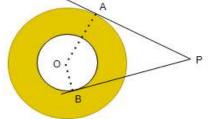
B)
$$4\sqrt{66}$$
 C) $2\sqrt{33}$

C)
$$2\sqrt{33}$$

ANS:
$$OP = \sqrt{8^2 + 15^2} = \sqrt{289} = 17$$

$$PB = \sqrt{17^2 - 5^2} = \sqrt{264} = 2\sqrt{66}$$

32 In figure, there are two concentric circles with centre of radii 5 cm and 3 cm. Tangents PA and PB are drawn from an external point P to these circles with centre O as shown in the figure. If AP = 12 cm, then BP =



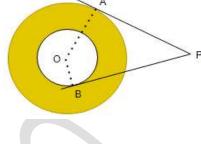
A)
$$\sqrt{160}$$

B)
$$\sqrt{150}$$

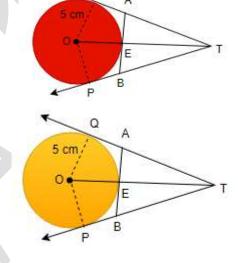
D)
$$2\sqrt{10}$$

ANS: A)
$$\sqrt{160}$$

33 In figure, O is the centre of a circle of radius 5 cm. T is a point such that OT = 13 cm and OT intersects circle at E. if AB is a tangent to the circle at E, find the length of AB, where TP and TQ are tangents to the circle.

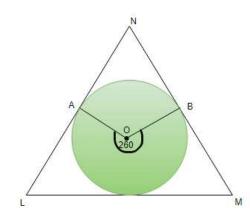


ANS: $TQ = \sqrt{13^2 - 5^2} = \sqrt{144} = 12$ TQ = PT = 12 cmLet AE = AQ = xAT = 12 - x, ET = 13 - 5 = 8 $AT^2 = AE^2 + ET^2$ $(12 - x)^2 = (x)^2 + 8^2$ $144 + x^{2} - 24x = x^{2} + 64$ $x = \frac{80}{24} = \frac{10}{3}$



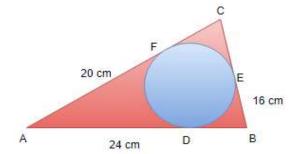
- $AB = 2 \times \frac{10}{3} = \frac{20}{3} cm$
- A circle with centre O is inscribed in a triangle LMN. 34 A and B are points of tangency. Reflex $\angle AOB = 260^{\circ}$, find ANB.

- B) 100°
- C) 80°
- D) 130°



ANS: C) 80°

35 A circle is inscribed in a ΔABC having sides 16 cm, 20 cm and 24 cm as shown in figure. Find AD, BE and CF.



ANS: Let AD = AF = x [Tangents from external point are equal]

BD = BE = y and CE = CF = z

According to the question,

$$AB = x + y = 24 \text{ cm} ... (i)$$

$$BC = y + z = 16 \text{ cm} ... (ii)$$

$$AC = x + z = 20 \text{ cm ...(iii)}$$

Subtracting (iii) from (i), we get

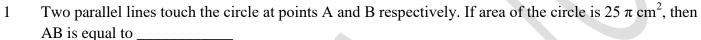
$$y - z = 4$$
 ... (iv)

Adding (ii) and (iv), we get

$$2y = 20 \Rightarrow y = 10 \text{ cm}.$$

Substituting the value of y in (ii) and (i) we get z = 6 cm; x = 14 cm

AD = 14 cm, BE = 10 cm and CF = 6 cm.



- (A) 5 cm
- (B) 8 cm
- (C) 10 cm
- (D) 25 cm

20 cm

24 cm

ANS: (c) Let radius of circle = R

$$\therefore \pi R^2 = 25 \pi$$

$$\Rightarrow$$
 R = 5 cm

- : Distance between two parallel tangents = diameter = $2 \times 5 = 10$ cm.
- In figure, PQ and PR are tangents to a circle with centre A. If \angle QPA = 27°, then \angle QAR equals to___
 - (A) 63°
- (B) 153°
- (C) 126°
- (D) 117°

ANS: (C)
$$126^{\circ}$$
 \angle QPA = \angle RPA

 $[:: \Delta AQP \cong \Delta ARP (RHS congruence rule)]$

$$\Rightarrow \angle RPA = 27^{\circ}$$

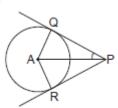
$$\therefore$$
 \angle QPR = \angle QPA + \angle RPA = 27° + 27° = 54° Now,

$$\angle QAR + \angle AQP + \angle ARP + \angle QPR = 360^{\circ}$$

$$\Rightarrow$$
 \angle QAR = $90^{\circ} + 90^{\circ} + 54^{\circ} = 360^{\circ}$

$$\Rightarrow$$
 \angle QAR = $360^{\circ} - 234^{\circ} = 126^{\circ}$

- (A) 7.5
- (B) 15
- (C) 10
- (D) 9

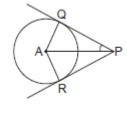


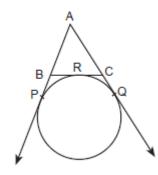
C

D

16 cm

В





ANS: (A)
$$AP = AQ$$

$$\Rightarrow$$
 AB + BP = AC + CQ

$$\Rightarrow$$
 5 + BP = 6 + CQ

$$BP = 1 + CQ$$

$$BP = 1 + CR$$

$$(: CQ = CR)$$

$$BP = 1 + (BC - BR)$$

$$BP = 1 + (4 - BP) (: BR = BP)$$

$$2 BP = 5 \Rightarrow BP = \frac{5}{2} = 2.5 cm$$

Now,
$$AP = AB + BP = 5 + 2.5 = 7.5$$
 cm

- 4 In the given figure, TP and TQ are two tangents to a circle with centre O, such that $\angle POQ = 110^{\circ}$. Then $\angle PTQ$ is equal to _____
 - (a) 55°
- (b) 70°
- (c) 110°
- (d) 90°

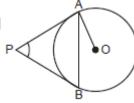
$$\angle PTQ + \angle TPO + \angle TQO + \angle POQ = 360^{\circ}$$

$$\Rightarrow$$
 \angle PTQ + 90° + 90° + 110° = 360°

$$\Rightarrow$$
 \angle PTQ + 290° = 360°

$$\Rightarrow$$
 \angle PTQ = $360^{\circ} - 290^{\circ} = 70^{\circ}$

- 5 In the figure PA and PB are tangents to the circle with centre O. If $\angle APB = 60^{\circ}$, then $\angle OAB$ is_
 - (A) 30°
- (B) 60°
- (C) 90°
- (D) 15°



ANS: (A) Given
$$\angle$$
 APB = 60°

$$\therefore$$
 \angle APB + \angle PAB + \angle PBA = 180°

$$\Rightarrow$$
 \angle APB + x + x = 180°

$$[\because PA = PB \therefore \angle PAB = \angle PBA = x (say)]$$

$$\Rightarrow 60^{\circ} + 2x = 180^{\circ}$$

$$\Rightarrow 2x = 180^{\circ} - 60^{\circ}$$

$$\Rightarrow 2x = 120^{\circ}$$

$$\Rightarrow x = 60^{\circ}$$

Also,
$$\angle$$
 OAP = 90°

$$\Rightarrow$$
 \angle OAB + \angle PAB = 90°

$$\Rightarrow$$
 \angle OAB + 60° = 90°

$$\Rightarrow$$
 \angle OAB = 30°

6 In figure, O is the centre of a circle, AB is a chord and AT is the tangent at A. If \angle AOB = 100°, then \angle BAT is equal to ____

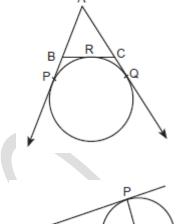
(B)
$$40^{\circ}$$

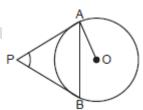
(C)
$$50^{\circ}$$

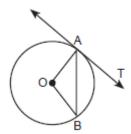
(D)
$$90^{\circ}$$

(C) $AOB = 100^{\circ}$ ANS:

Now, in \triangle AOB,







$$\angle$$
 AOB + \angle OAB + \angle OBA = 180° (Angle sum property of \triangle)

$$\Rightarrow 100^{\circ} + x + x = 180^{\circ}$$
 [Let $\angle OAB = \angle OBA = x$]

$$\Rightarrow 2x = 180^{\circ} - 100^{\circ}$$
 $\Rightarrow 2x = 80^{\circ} \Rightarrow x = 40^{\circ}$

Also,
$$\angle$$
 OAB + \angle BAT = 90°

[: OA is radius and TA is tangent at A]

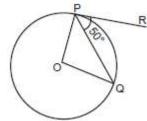
$$\Rightarrow 40^{\circ} + \angle BAT = 90^{\circ} \Rightarrow \angle BAT = 50^{\circ}$$

7 In figure if O is centre of a circle, PO is a chord and the tangent PR at P makes an angle of 50° with PQ, then ∠ POQ is equal to

(B)
$$80^{\circ}$$

(C)
$$90^{\circ}$$

(D)
$$75^{\circ}$$



ANS: (A) OP \perp PR [: Tangent and radius are \perp to each other at the point of contact]

$$\angle OPQ = 90^{\circ} - 50^{\circ} = 40^{\circ}$$

$$OP = OQ [Radii]$$

$$\therefore$$
 \angle OPQ = \angle OQP = 40°

In $\triangle OPQ$,

$$\Rightarrow$$
 \angle POQ + \angle OPQ + \angle OQP = 180°

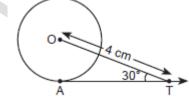
$$\Rightarrow$$
 \angle POQ + 40° + 40° = 180°

$$\angle POQ = 180^{\circ} - 80^{\circ} = 100^{\circ}$$

8 In figure AT is a tangent to the circle with centre O such that OT = 4 cm and $\angle OTA = 30^{\circ}$. Then AT is equal to

(C)
$$2\sqrt{3}$$
 cm

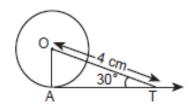
(C)
$$2\sqrt{3}$$
 cm (D) $4\sqrt{3}$ cm



ANS: $\angle OAT = 90^{\circ}$

In
$$\triangle OAT$$
, $\frac{AT}{OT} = cos30^{\circ}$

$$\frac{AT}{4} = \frac{\sqrt{3}}{2} \implies AT = 2\sqrt{3} \text{ cm}$$



- 9 From a point P which is at a distance of 13 cm from the centre O of a circle of radius 5 cm, the pair of tangents PQ and PR to the circle are drawn. Then the area of the quadrilateral PQOR is _
 - (A) 60 cm^2
- (B) 65 cm^2
- (C) 30 cm^2
- (D) 32.5 cm^2

ANS: $(A) 60 \text{ cm}^2$

$$PQ = \sqrt{OP^2 - OQ^2}$$

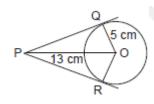
$$PO = 12$$

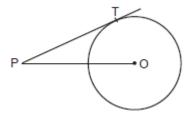
area of the quadrilateral PQOR = $ar \Delta POQ + ar of \Delta POR$

$$\frac{1}{2} \times 12 \times 5 + \frac{1}{2} \times 12 \times 5 = 60 \text{ cm}^2$$

10 In the given figure, point P is 26 cm away from the centre O of a circle and the length PT of the tangent drawn from P to the circle is 24 cm. Then the radius of the circle is _

- (B) 26 cm
- (C) 24 cm
- (D) 10 cm





ANS: (D) : OT is radius and PT is tangent : OT \perp PT Now, in \triangle OTP,

$$OP^2 = PT^2 + OT^2$$

$$\Rightarrow$$
 26² = 24² + OT²

$$\Rightarrow$$
 676 – 576 = OT²

$$\Rightarrow 100 = OT^2 \Rightarrow OT = 10 \text{ cm}$$

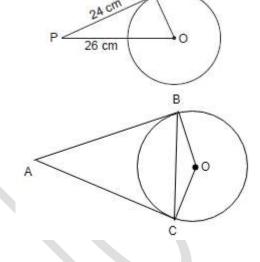
In the given figure, AB and AC are tangents to the circle with 11 centre O such that \angle BAC = 40°, then \angle BOC is equal to___

(A)
$$40^{\circ}$$

(B)
$$50^{\circ}$$

(C)
$$140^{\circ}$$

(D)
$$150^{\circ}$$



ANS: (C) In quadrilateral ABOC
$$\angle$$
ABO + \angle BOC + \angle OCA + \angle BAC = 360°

$$\angle ABO + \angle BOC + \angle OCA + \angle BAC = 360$$

$$\Rightarrow 90^{\circ} + \angle BOC + 90^{\circ} + 40^{\circ} = 360^{\circ}$$

$$\Rightarrow \angle BOC = 360^{\circ} - 220^{\circ} = 140^{\circ}$$

In figure, O is the centre of the circle and TP is the tangent to 12 the circle from an external point T. If $\angle PBT = 30^{\circ}$, prove that BA : AT = 2 : 1.

 \angle BPA = 90° (Angle in semicircle) ANS: In \triangle BPA,

$$\angle ABP + \angle BPA + \angle PAB = 180^{\circ}$$

$$30^{\circ} + 90^{\circ} + \angle PAB = 180^{\circ}$$

$$\angle PAB = 60^{\circ}$$

Also
$$\angle POA = 2\angle PBA$$

$$\angle POA = 2 \times 30^{\circ} = 60^{\circ}$$

OP = AP (sides opposite to equal angles) ...(i)

In
$$\triangle$$
 OPT, \angle OPT = 90°

$$\angle POT = 60^{\circ}$$
 and $\angle PTO = 30^{\circ}$ [angle sum property]

Also
$$\angle APT + \angle ATP = \angle PAO$$
 (exterior angle property)

$$\angle APT + 30^{\circ} = 60^{\circ}$$

$$APT = 30^{\circ}$$

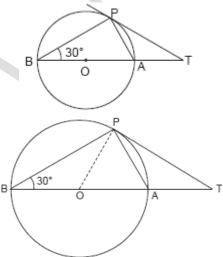
AP = AT (sides opposite to equal angles) ... (ii)

From (i) and (ii) AT = OP = radius of the circle;

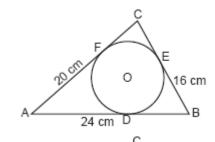
and AB = 2r

$$AB = 2AT$$
 $\frac{AB}{AT} = 2$

AB : AT = 2 : 1



13 A circle is inscribed in a Δ ABC having sides 16 cm, 20 cm and 24 cm as shown in figure. Find AD, BE and CF



D 24 cm 16 cm

ANS: Let AD = AF = x [Tangents from external point are equal]

$$BD = BE = y$$
 and $CE = CF = z$

According to the question,

$$AB = x + y = 24 \text{ cm} ... (i)$$

$$BC = y + z = 16 \text{ cm} ... (ii)$$

$$AC = x + z = 20 \text{ cm ...(iii)}$$

Subtracting (iii) from (i), we get

$$y - z = 4$$
 ... (iv)

Adding (ii) and (iv), we get

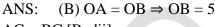
$$2y = 20 \implies y = 10 \text{ cm}.$$

Substituting the value of y in (ii) and (i) we get z = 6 cm; x =

AD = 14 cm, BE = 10 cm and CF = 6 cm.

A circle touches x-axis at A and y-axis at B. If O is origin and OA = 5 units, then diameter of the circle is

- (A) 8 units
- (B) 10 units
- (C) $10\sqrt{2}$ units
- (D) 8 $\sqrt{2}$ units

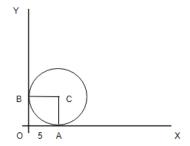


$$AC = BC [Radii]$$

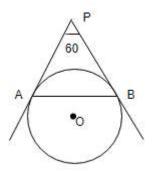
 \Rightarrow OACB is a square.

$$\Rightarrow$$
 AC = OA = 5

 \Rightarrow Diameter = 10 units.



In figure, AP and BP are tangents to a circle with centre O, such that AP = 5 cm and \angle APB = 60°. Find the length of chord AB.



ANS: AP = BP [tangents from external point P]

$$\angle$$
 PAB = \angle PBA [Angles opposite to equal sides]

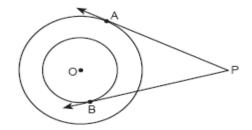
Now
$$\angle APB + \angle PAB + \angle PBA = 180^{\circ}$$

$$60^{\circ} + 2 \angle PAB = 180^{\circ}$$

$$\angle$$
 PAB = 60°

$$\Rightarrow \Delta$$
 APB is an equilateral \Rightarrow AB = AP = 5 cm

In figure, there are two concentric circles, with centre O and of radii 5 cm and 3 cm. From an external point P, tangents PA and PB are drawn to these circles. If AP = 12 cm, find the length of BP.



$$PA = 12 \text{ cm}, OA = 5 \text{ cm}, OB = 3 \text{ cm}$$

$$OP^2 = OA^2 + AP^2 = OB^2 + BP^2$$

$$25 + 144 = 9 + BP^2$$

$$169 - 9 = BP^2$$

$$\Rightarrow$$
 BP = $\sqrt{160}$ cm = 12.65 cm. (Approx.)

Find the length of the tangent drawn from a point whose distance from the centre of a circle is 25 cm. Given that radius of the circle is 7 cm.

Given that radius of the circle is 7 cm.

Let O is the centre of the circle and P is a point such that OP

= 25 cm and PQ is the tangent to the circle.

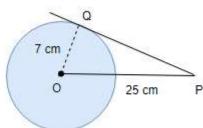
$$OQ = radius = 7 cm$$

In
$$\triangle$$
 OQP, we have $Q = 90^{\circ}$

$$OP^2 = OQ^2 + PQ^2$$

$$\Rightarrow$$
 $(25)^2 = 7^2 + PQ^2 \Rightarrow PQ^2 = 625 - 49 = 576$

$$\Rightarrow$$
 PQ = 24 cm Hence, the length of the tangent = 24 cm



What is the angle between a tangent to a circle and the radius through the point of contact? Justify your answer.

ANS: 90°. Because radius through point of contact of tangent to a circle is perpendicular to the tangent.

19 What is the distance between two parallel tangents of a circle of radius 7 cm?

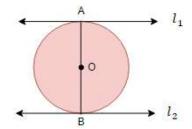
Two parallel tangents of a circle can be drawn only at the end points of the diameter

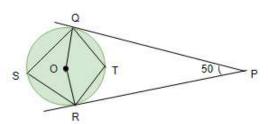
$$\Rightarrow l_1 \parallel l_2$$

$$\Rightarrow$$
 Distance between l_1 and $l_2 = AB = Diameter of the circle$

$$= 2 \times r = 2 \times 7 \text{ cm} = 14 \text{ cm}$$

20 In the given figure, O is the centre . find \angle QSR





ANS: Given: PQ and PR are tangents to a circle with centre O and \angle QPR = 50°.

To find: ∠ QSR

Sol.
$$\angle$$
 QOR + \angle QPR = 180°

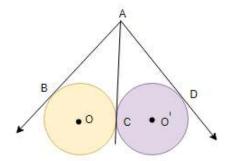
$$\angle$$
 QOR + 50° = 180°

$$\Rightarrow$$
 \angle QOR = 130°

$$\Rightarrow$$
 \angle QSR = $\frac{1}{2}$ \angle QOR [Degree measure theorem]

$$\Rightarrow$$
 \angle QSR = $\frac{1}{2} \times 130^{\circ} = 65^{\circ}$

21 In the given figure, AB, AC and AD are tangents. If AB = 5 cm, find AD



ANS: Given: AB, AC and AD are tangents. AB = 5 cm.

To find: AD

Sol. AB and AC are tangents from the same point to the circle with centre O.

$$\Rightarrow$$
 AB = AC ...(*i*)

(Length of the tangents from the same external point are equal).

AC and AD are tangents from the same point to the circle with centre O.

$$\Rightarrow$$
 AC = AD ...(ii)

(Length of the tangents from the same external point are equal)

From (i) and (ii)

$$AB = AC = AD = 5 \text{ cm}$$

A point P is 26 cm from the centre of the circle. The length of the tangent drawn from P to the circle is 24 cm. Find the radius of the circle.

Let O is the centre of the circle and PQ is the tangent from P. A.T.Q., OP = 26 cm and PQ = 24 cm

In \triangle OQP, we have \angle Q = 90°

$$OP^2 = OQ^2 + PQ^2$$

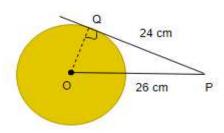
$$\Rightarrow$$
 $(26)^2 = OQ^2 + (24)^2$

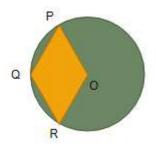
$$\Rightarrow$$
 OQ² = 676 - 576 = 100

$$\Rightarrow$$
 OQ = 10 cm

Radius of the circle = 10 cm

In the given figure, OPQR is a rhombus, three of whose vertices lie on a circle with centre O. If the area of the rhombus is $32\sqrt{3}$ cm², find the radius of the circle.





Side of the rhombus = radius of the circle

$$OP = OQ = PQ = x = OR = QR$$

 Δ ORQ and Δ OPQ are equilateral triangles

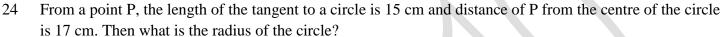
Area of the equilateral triangle OPQ = $\frac{\sqrt{3}}{4} \alpha^2$

Area of the equilateral $\triangle OPQ = \frac{\sqrt{3}}{4} \chi^2$

Area of the rhombus = $2 \text{ ar } (\Delta OPQ)$

$$2 \times \frac{\sqrt{3}}{4} x^2 = \frac{\sqrt{3}}{2} x^2 = 32\sqrt{3}$$

$$x^2 = 64 \text{ cm}^2$$
 $x = 8 \text{ cm}$



$$\angle$$
 OAP = 90°

$$\Rightarrow$$
 172 = r^2 + 15² [By Pythagoras theorem]

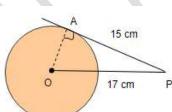
$$\Rightarrow r^2 = 17^2 - 15^2 = (17 - 15)(17 + 15) = 2 \times 32$$

$$\Rightarrow r^2 = 64 \Rightarrow r = \pm 8 \text{ cm}$$

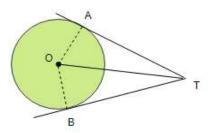
Ignoring negative value as length cannot be negative.

$$\Rightarrow r = 8 \text{ cm}$$

In figure , O is the centre of the circle , if \angle ATO = 40°, find \angle AOB.



= radius



ANS: In
$$\triangle OAT$$
, $\angle ATO = 40^{\circ}$, $\angle OAT = 90^{\circ}$

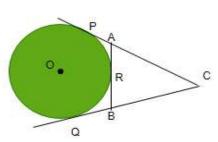
$$\angle$$
 AOT = 50° [Angle sum property]

Now
$$\angle$$
 BTO = 40° as OT bisects ATB

Similarly,
$$\angle$$
 BOT = 50°

$$\angle$$
 AOB = \angle AOT + \angle BOT = 50° + 50° = 100°

In figure, CP and CQ are tangents to a circle with centre O. ARB is another tangent touching the circle at R. If CP = 11 cm, and BC = 7 cm, then find the length of BR.



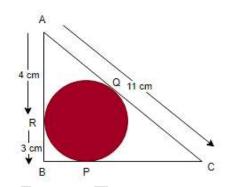
ANS: Since CP = CQ = 11cm [Length of the two tangents from same external point]

$$CQ = CB + BQ$$

But
$$BQ = BR$$

Therefore,
$$11 = 7 + BR \Rightarrow BR = 4 \text{ cm}$$

27 In figure, \triangle ABC is circumscribing a circle. Find the length of BC.



ANS: AR = 4 cm

Also,
$$AR = AQ \Rightarrow AQ = 4 \text{ cm}$$

Now,
$$QC = AC - AQ = 11 \text{ cm} - 4 \text{ cm} = 7 \text{ cm} ...(i)$$

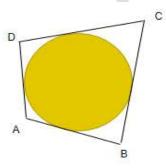
Also,
$$BP = BR$$

$$BP = 3 \text{ cm} \text{ and } PC = QC$$

$$PC = 7 \text{ cm [From (i)]}$$

$$BC = BP + PC = 3 \text{ cm} + 7 \text{ cm} = 10 \text{ cm}$$

28 In figure, a circle touches all the four sides of a quadrilateral ABCD whose sides are AB = 6 cm, BC = 9cm and CD = 8 cm. Find the length of side AD.



ANS: If a circle touches all the four sides of quadrilateral ABCD, then

$$AB + CD = AD + BC$$

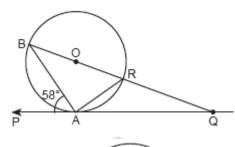
$$6 + 8 = AD + 9$$

$$\Rightarrow$$
14 = AD + 9

$$\Rightarrow$$
14 – 9 = AD

$$\Rightarrow$$
AD = 5 cm

In figure, O is the centre of the circle, PQ is a tangent to 29 the circle at A. If \angle PAB = 58°, find \angle ABQ and ∠ AQB.



Join OA.

$$OA \perp PAQ$$
.

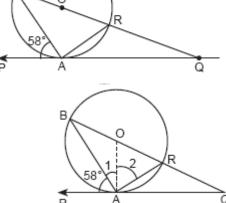
$$\angle$$
 OAP = 90°

$$\Rightarrow$$
 $\angle 1 + 58^{\circ} = 90^{\circ}$

$$\Rightarrow$$
 $\angle 1 = 90^{\circ} - 58^{\circ} = 32^{\circ}$

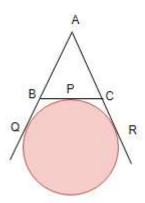
In
$$\triangle BOA$$
, $OA = OB$.

Now
$$\angle 1 = \angle ABQ$$



$$\Rightarrow$$
 \angle ABQ = 32°
 \angle PAB + \angle BAQ = 180° \Rightarrow \angle BAQ = 180° - 58° = 122°
In \triangle ABQ,
 \angle ABQ + \angle BAQ + \angle AQB = 180°
 \angle AQB = 180° - 122° - 32° = 26°

30 In figure, a circle touches the side BC of \triangle ABC at P and touches AB and AC produced at Q and R respectively. If AQ = 5 cm, find the perimeter of \triangle ABC.



ANS: Given: A circle touches the side BC of \triangle ABC at P and touches

AB and AC produced at Q and R respectively and AQ = 5 cm.

To find: Perimeter of $\triangle ABC$.

Sol.: AQ and AR are tangents from the same point

AQ = AR = 5 cm ...(i) [Tangents from the same external points are equal]

BQ and BP are tangents from same point

$$\Rightarrow$$
BQ = BP ...(ii)

CP and CR are also tangents from the same point

$$\Rightarrow$$
 CP = CR ...(iii)

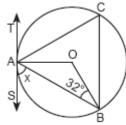
In \triangle ABC, Perimeter of \triangle ABC = AB + BC + AC = AB + BP + CP + AC

$$AB + BQ + CR + AC = AQ + AR$$
 [From (ii) and (iii)]

$$= 5 \text{ cm} + 5 \text{ cm} = 10 \text{ cm} [\text{From (i)}]$$

Perimeter of \triangle ABC = 10 cm

In the given figure, TAS is a tangent to the circle, with centre O, at the point A. If \angle OBA = 32°, find the value of x.



Given: TAS is tangent to the circle with centre O at point

$$\angle$$
 OBA = 32°

To find: *x*

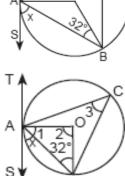
Sol. In \triangle OAB , OA = OB [Radii of the same circle]

 \Rightarrow $\angle 1 = 32^{\circ}$ [Angle opposite to equal sides of a triangle

are equal]

In $\triangle OAB$,

$$\angle 1 + \angle 2 + 32^{\circ} = 180^{\circ}$$
 [Angle sum property of a triangle]



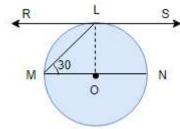
$$\Rightarrow$$
 $\angle 2 + 32^{\circ} + 32^{\circ} = 180^{\circ}$ \Rightarrow $\angle 2 = 180^{\circ} - 64^{\circ} = 116^{\circ}$

$$\angle 3 = \frac{1}{2} \angle 2 = \frac{1}{2} \times 116^{\circ} = 58^{\circ}$$
 [Degree measure theorem]

TAS is tangent to the circle (Given)

 $x = \angle ACB = 58^{\circ}$ [Angles in the alternate segments are equal]

In the given figure, RS is the tangent to the circle at L and MN is a diameter. If \angle NML = 30°, determine \angle RLM.



Join OL

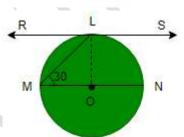
 $OL \perp RS$.

Also OL = OM [Radii of the same circle]

$$\angle$$
 OML = \angle OLM

$$\Rightarrow \angle OLM = 30^{\circ}$$

$$\Rightarrow$$
 \angle RLM = $90^{\circ} - 30^{\circ} = 60^{\circ}$



Two tangents PA and PB are drawn to the circle with centre O, such that $APB = 120^{\circ}$. Prove that OP = 2AP.

Given. A circle C(O, r). PA and PB are tangents to the circle from point P, outside the circle such that

$$APB =$$

120°. OP is joined.

To Prove.
$$OP = 2AP$$
.

Construction. Join OA and OB.

Proof. Consider Δs PAO and PBO

PA = PB [Tangents to a circle, from a point outside it, are equal.]

OP = OP [Common]

$$\angle OAP = \angle OBP = 90^{\circ}$$

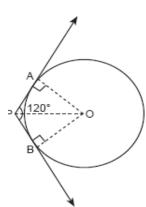
$$\triangle OAP \cong \triangle OBP$$
 [RHS]

$$\angle OPA = \angle OPB = \frac{1}{2} \angle APB = \frac{1}{2} \times 120^{\circ} = 60^{\circ}.$$

In right angled
$$\triangle OAP$$
, $\frac{AP}{OP} = \cos 60^{\circ} = \frac{1}{2} \Rightarrow OP =$

2AP.

34 The two tangents from an external point P to a circle with centre O are PA and PB. If \angle APB = 70°, what is the value of \angle AOB?



PA and PB are tangents to the circle.

 \angle A = \angle B = 90° [Tangent makes 90° angle with the radius at the point of contact]

In quadrilateral OAPB

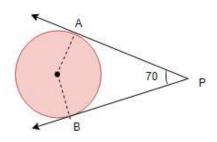
$$\angle$$
 AOB + \angle A + \angle P + \angle B = 360° [Angle sum property of a quadrilateral].

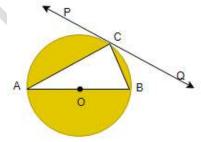
$$\Rightarrow$$
 \angle AOB + 90° + 70° + 90° = 360°

$$\Rightarrow$$
 \angle AOB + 250° = 360°

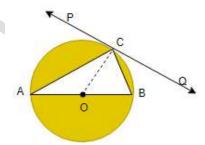
$$\Rightarrow$$
 \angle AOB = $360^{\circ} - 250^{\circ} = 110^{\circ}$

In figure, PQ is a tangent at a point C to a circle with centre O. If AB is a diameter and \angle CAB = 30°, find \angle PCA.



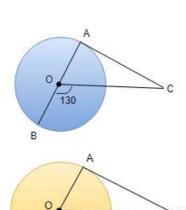


In
$$\triangle$$
 AOC,
AO = CO [Radii]
 \angle OCA = \angle CAB = 30°
OC \perp PQ, \Rightarrow \angle OCP = 90°
 \Rightarrow \angle PCA + \angle OCA = 90°
 \Rightarrow \angle PCA + 30° = 90° \Rightarrow \angle PCA = 60°



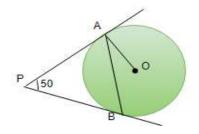
In figure, AOB is a diameter of a circle with centre O and AC is a tangent to the circle at A. If \angle BOC = 130°, then find \angle ACO

$$\angle$$
 AOC = $180^{\circ} - 130^{\circ} = 50^{\circ}$
 \angle OAC = 90° [OA \bot AC]
In \triangle OAC,
 \angle OAC + \angle AOC + \angle ACO = 180°
 $90^{\circ} + 50^{\circ} + \angle$ ACO = 180°
 $\Rightarrow \angle$ ACO = 40°



130

37 In figure, PA and PB are tangents to the circle with centre O such that \angle APB = 50°. Write the measure of \angle OAB



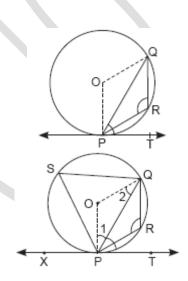
ANS: In \triangle APB, \angle BAP = \angle ABP (angle opp. to equal side)

$$\angle BAP = \frac{1}{2} (180^{\circ} - APB) = \frac{1}{2} (130^{\circ}) = 65^{\circ}$$

$$\angle$$
 OAP = 90°

$$\angle OAB = 90^{\circ} - \angle BAP = 90^{\circ} - 65^{\circ} = 25^{\circ}$$

In figure, PQ is a chord of a circle with centre O and PT is a tangent. If \angle QPT = 60°, find \angle PRQ



$$\angle OPQ + \angle QPT = 90^{\circ}$$

$$\angle OPQ = 90^{\circ} - \angle QPT = 90^{\circ} - 60^{\circ} = 30^{\circ}$$

In \triangle OPQ,

$$\angle POQ + \angle 1 + \angle 2 = 180^{\circ}$$

$$\angle POQ + 2 \angle 1 = 180^{\circ} (\angle 1 = \angle 2)$$

$$\angle POQ + 2(30^{\circ}) = 180^{\circ}$$

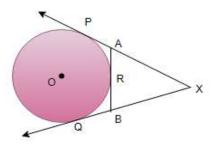
$$\angle POQ = 120^{\circ}$$

$$\angle PSQ = \frac{1}{2} \quad POQ = \frac{1}{2} \times 120^{\circ} = 60^{\circ}$$

 $PSQ + PRQ = 180^{\circ}$ (sum of opp. angles of cyclic quadrilateral)

$$\angle PRQ = 180^{\circ} - \angle PRQ = 180^{\circ} - 60^{\circ} = 120^{\circ}$$

In figure, XP and XQ are two tangents to a circle with centre O from a point X outside the circle. ARB is tangent to circle at R. Prove that XA + AR = XB + BR.



Given: XP, XQ and ARB are three tangents.

To prove:
$$XA + AR = XB + BR$$

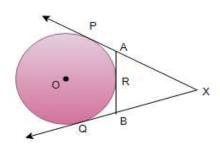
Proof:
$$AP = AR \dots (i)$$

and
$$BQ = BR \dots (ii)$$

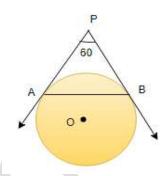
Also XQ = XP [Tangents drawn from an external point]

$$XA + AP = XB + BQ$$

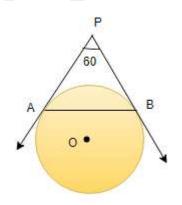
$$XA + AR = XB + BR$$
 [From (i) and (ii)]



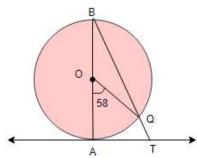
In figure, AP and BP are tangents to a circle with centre O, such that AP = 5 cm and \angle APB = 60°. Find the length of chord AB.



ANS: AP = BP [tangents from external point P] $\angle PAB = \angle PBA$ [Angles opposite to equal sides] Now $\angle APB + \angle PAB + \angle PBA = 180^{\circ}$ $60^{\circ} + 2 \angle PAB = 180^{\circ}$ $\angle PAB = 60^{\circ}$ ΔAPB is an equilateral Δ AB = AP = 5 cm

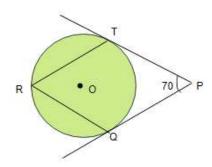


In figure, AB is the diameter of a circle with centre O and AT is a tangent. If \angle AOQ = 58°, find \angle ATQ.



$$\angle$$
 ABQ = $\frac{1}{2} \times 58^{\circ} = 29^{\circ}$
In \triangle ABT,
 \angle BAT + \angle ABT + \angle ATB = 180°
 $90^{\circ} + 29^{\circ} + \angle$ ATB = 180°
 \angle ATB = 61°
as \angle ATB = \angle ATQ \Rightarrow \angle ATQ = 61°

In figure, O is the centre of a circle. PT and PQ are tangents to the circle from an external point P. If \angle TPQ = 70° , find \angle TRQ



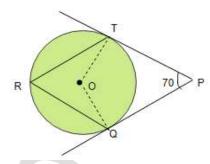
$$\angle$$
 TOQ + \angle TPQ = 180°

$$\Rightarrow$$
 \angle TOQ = 110°

Also
$$\angle TOQ = 2 \angle TRQ$$

[angle subtended by an arc at centre of the circle is twice the angle subtended by it in alternate segment]

$$\Rightarrow$$
110° = 2 \angle TRQ \Rightarrow \angle TRQ = 55°



ABC is an isosceles triangle, in which AB = AC, circumscribed about a circle. Show that BC is bisected 43 at the point of contact

Here,
$$AB = AC$$
 (Given) ...(i)

$$AF = AE$$
 (Tangents from A) ...(ii)

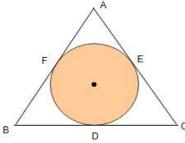
$$AB - AF = AC - AE$$

$$\Rightarrow$$
 BF = CE ...(*iii*)

Now,
$$BF = BD$$
 (Tangents from B)

Also,
$$CE = CD$$
 (Tangents from C)

$$\Rightarrow$$
 BD = CD



Prove that the intercept of a tangent between two parallel tangents to a circle subtends a right angle at the 44 centre

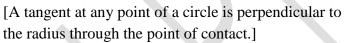
Given. AB and CD are two tangents to a circle and $AB \parallel CD$.

Tangent BD intercepts an angle BOD at the centre.

To Prove. $BOD = 90^{\circ}$.

Construction. Join OQ, OB, OD and OR.

Proof. OP \perp BD.



In right angled Δs OQB and OPB,

$$\angle 1 = \angle 2$$
,

Similarly in right angled Δs OPD and ORD

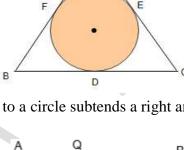
$$\angle 3 = \angle 4$$

$$\angle BOD = \angle 1 + \angle 3 = \frac{1}{2} [2\angle 1 + 2\angle 3)] = \frac{1}{2} (\angle 1 + 2\angle 3)$$

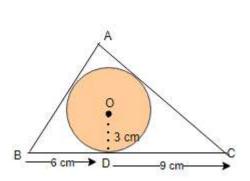
$$\angle 1 + \angle 3 + \angle 3$$

$$= \frac{1}{2} (\angle 1 + \angle 2 + \angle 3 + \angle 4) = \frac{1}{2} (180^{\circ}) = 90^{\circ}.$$

In figure, a triangle ABC is drawn to circumscribe a 45 circle of radius 3 cm, such that the segments BD and DC are respectively of lengths 6 cm and 9 cm. If the area of \triangle ABC is 54 cm², then find the lengths of sides AB and AC.



c



Let
$$AF = x \text{ cm}$$

$$AF = AE = x$$
 [tangents from A]

Also
$$BD = BF = 6 \text{ cm}$$
 and $CD = CE = 9 \text{ cm}$

$$AB = (6 + x)$$
 cm and $AC = (9 + x)$ cm

Area
$$\triangle$$
 ABC = Area \square BOC + Area \square COA + Area \square AOB

$$\Rightarrow$$
 54 = $\frac{1}{2}$ BC × OD + $\frac{1}{2}$ AC × OE + $\frac{1}{2}$ AB × OF

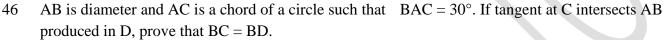
$$\Rightarrow$$
 54 × 2 = 15 × 3 + (6 + x) × 3 + (9 + x) × 3

$$108 = 45 + 18 + 3x + 27 + 3x$$

$$6x = 18 \implies x = 3$$

$$\Rightarrow$$
 AB = 6 + x = 6 + 3 = 9 cm and AC = 9 + x = 9 + 3

$$= 12 \text{ cm}$$



Join OC

$$OC \perp CD : \angle 2 + \angle 3 = 90^{\circ}$$

$$OC = OA : \angle 1 = 30^{\circ}$$

Now
$$\angle 1 + \angle 2 = 90^{\circ}$$
 [Angles in a semicircle]

$$\therefore$$
 $\angle 2 = 90^{\circ} - 30^{\circ} = 60^{\circ}$

$$\Rightarrow$$
 $\angle 3 = 30^{\circ}$

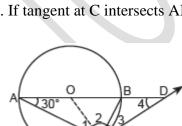
In
$$\triangle ACD$$
, $\angle ACD + \angle CAD + \angle 4 = 180^{\circ}$

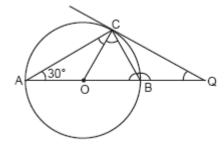
$$\Rightarrow$$
 120° + 30° + \angle 4 = 180° \Rightarrow \angle 4 = 30°

In
$$\triangle BCD$$
, $\angle 3 = \angle 4$

$$\therefore$$
 BC = BD.

In the figure, AB is diameter of a circle with centre O and QC is a tangent to the circle at C. If $\angle CAB = 30^{\circ}$, find $\angle CQA$ and $\angle CBA$.





ANS: In
$$\triangle$$
 AOC, OA = OC [Radii of the same circle]

$$\angle ACO = \angle CAO = 30^{\circ}$$
 [Opp. angles of equal sides are equal.]

Also
$$\angle ACB = 90^{\circ}$$
 [Angle in semicircle]

$$\angle OCB = 90^{\circ} - 30^{\circ} = 60^{\circ}$$

In \triangle COB, OC = OB [Radii of the semicircle]

$$\angle$$
 OCB = \angle OBC = 60° [Opposite angles of equal sides]

Now OC \perp CQ

$$\angle OCQ = 90^{\circ} \Rightarrow \angle BCQ = 90^{\circ} - 60^{\circ} = 30^{\circ}$$

Also
$$\angle$$
 OBC + \angle CBQ = 180°

$$\Rightarrow$$
60° + \angle CBQ = 180° \Rightarrow \angle CBQ = 120°

In \triangle CBQ,

$$\angle$$
 BCQ + \angle CBQ + \angle CQB = 180°

$$\Rightarrow 30^{\circ} + 120^{\circ} + \angle CQB = 180^{\circ} \Rightarrow \angle CQB = 30^{\circ}$$

$$\angle CQA = 30^{\circ}$$
,

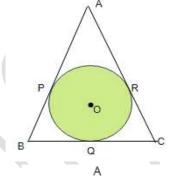
Now
$$\angle CBA = 180^{\circ} - \angle CBQ = 180^{\circ} - 120^{\circ} = 60^{\circ}$$
.

48 In figure, the sides AB, BC and CA of triangle ABC touch a circle with centre O and radius r at P, Q and R respectively.

Prove that

(i)
$$AB + CQ = AC + BQ$$

(ii) Area (\triangle ABC) = $\frac{1}{2}$ (perimeter of \triangle ABC) $\times r$



Similarly,
$$BP = BQ$$
 ...(ii)

$$CR = CQ ...(iii)$$

Now,
$$AP = AR$$

$$\Rightarrow$$
 (AB – BP) = (AC – CR)

$$\Rightarrow$$
AB + CR = AC + BP

$$\Rightarrow$$
AB + CQ = AC + BQ [Using eq. (ii) and (iii)]

(ii) Let AB =
$$x$$
, BC = y , AC = z

Perimeter of
$$\triangle$$
 ABC = $x + y + z$...(iv)

Area of
$$\triangle$$
 ABC = $\frac{1}{2}$ [area of \triangle AOB + area of \triangle BOC +

area of AOC]

$$\Rightarrow$$
Area of \triangle ABC = $\frac{1}{2}$ AB \times OP + $\frac{1}{2}$ \times BC \times OQ + $\frac{1}{2}$ \times AC

 \times OR

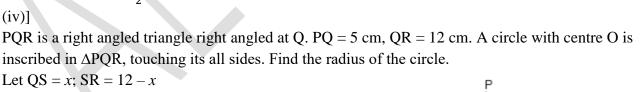
Area of
$$\triangle$$
 ABC = $\frac{1}{2} x \times r + \frac{1}{2} y \times r + \frac{1}{2} z \times r$

$$\Rightarrow$$
Area of \triangle ABC = $\frac{1}{2}(x+y+z)\times r$

⇒ Area of
$$\triangle$$
 ABC = $\frac{1}{2}$ (Perimeter of \triangle ABC) × r [Using

(iv)]

49



Let QS =
$$x$$
; SR = $12 - x$

$$PT = 5 - x$$
; $PM = PT$

$$PM = 5 - x$$

Also
$$SR = MR \implies MR = 12 - x$$

Also
$$PQ^2 + QR^2 = PR^2$$

$$\Rightarrow$$
 PR = 13 \Rightarrow PM + MR = 13

$$\Rightarrow$$
 5 - x + 12 - x = 13 \Rightarrow 2x = 4 \Rightarrow x = 2

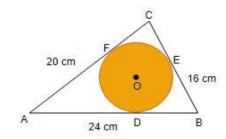
Also OSQT is a square

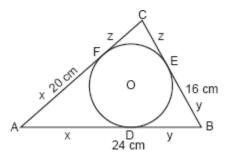
$$\therefore$$
 OS = QS \Rightarrow OS = 2 cm



 \therefore Radius of incircle = 2 cm.

50 A circle is inscribed in a ΔABC having sides 16 cm, 20 cm and 24 cm as shown in figure. Find AD, BE and CF.





Let AD = AF = x [Tangents from external point are equal]

$$BD = BE = y$$
 and $CE = CF = z$

According to the question,

$$AB = x + y = 24 \text{ cm} ... (i)$$

$$BC = y + z = 16 \text{ cm} ... (ii)$$

$$AC = x + z = 20 \text{ cm ...(iii)}$$

Subtracting (iii) from (i), we get y-z=4 ... (iv)

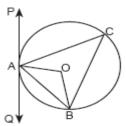
Adding (ii) and (iv), we get

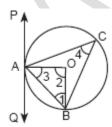
$$2y = 20 \Rightarrow y = 10 \text{ cm}.$$

Substituting the value of y in (ii) and (i) we get z = 6 cm; x = 14 cm

$$AD = 14$$
 cm, $BE = 10$ cm and $CF = 6$ cm.

51 PAQ is a tangent to the circle with centre O at a point A as shown in figure. If \angle OBA = 35°, find the value of \angle BAQ and \angle ACB.





Given: PAQ is a tangent to the circle with centre O at a point A as shown in figure $OBA = 35^{\circ}$.

To find: BAQ and ACB

Proof: OA = OB [Radii of the same circle]

 $\Rightarrow \angle 3 = 35^{\circ}$ [Angles opposite to equal sides of a triangle are equal]

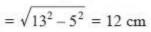
But, $\angle 1 + \angle 2 + \angle 3 = 180^{\circ}$ [Angle sum property]

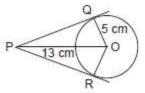
$$\Rightarrow 35^{\circ} + 35^{\circ} + \angle 2 = 180^{\circ} \Rightarrow \angle 2 = 180^{\circ} - 70^{\circ} = 110^{\circ}$$

$$4 = \frac{1}{2} \angle 2 = \frac{1}{2} \times 110^{\circ} = 55^{\circ}$$

- $\Rightarrow \angle ACB = 55^{\circ}$ [Degree measure theorem]
- \angle BAQ = \angle ACB = 55° [Angles in the same segment]
- From a point P which is at a distance of 13 cm from the centre O of a circle of radius 5 cm, the pair of 52 tangents PQ and PR to the circle are drawn. Then the area of the quadrilateral PQOR is
 - (a) 60 cm^2
- (b) 65 cm^2
- (c) 30 cm^2
- (d) 32.5 cm^2

(a) Here, $PQ = \sqrt{OP^2 - OQ^2}$



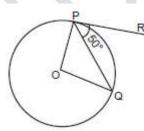


Area of quadrilateral POOR

= ar. of
$$\triangle POQ$$
 + ar. of $\triangle POR$

$$=\frac{1}{2} \times 12 \times 5 + \frac{1}{2} \times 12 \times 5 = 30 + 30 = 60 \text{ cm}^2.$$

- In figure if O is centre of a circle, PQ is a chord and the 53 tangent PR at P makes an angle of 50° with PQ, then ∠ POQ is equal to
 - a) 100°
- (b) 80°
- $(c) 90^{\circ}$
- (d) 75°



(a) OP ⊥ PR [: Tangent and radius are ⊥ to each other at the point of contact] ANS:

$$\angle OPQ = 90^{\circ} - 50^{\circ} = 40^{\circ}$$

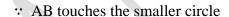
$$OP = OQ [Radii]$$

$$\therefore$$
 \angle OPQ = \angle OQP = 40°

In
$$\triangle$$
 OPQ, \Rightarrow \angle POQ + \angle OPQ + \angle OQP = 180°

$$\Rightarrow$$
 $\angle POQ + 40^{\circ} + 40^{\circ} = 180^{\circ} \ \angle POQ = 180^{\circ} - 80^{\circ} = 100^{\circ}.$

54 Two concentric circles are of radii 13 cm and 5 cm. The length of the chord of larger circle which touches the smaller circle is _



$$\therefore$$
 OC \perp AB and hence AC = BC

In right
$$\triangle OCA$$
, $OA^2 = OC^2 + AC^2$

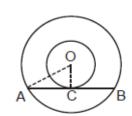
$$\Rightarrow AC^2 = 13^2 - 5^2$$

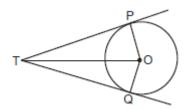
$$\Rightarrow$$
 AC = 12

∴
$$AB = 2 \times 12 = 24$$
 cm.

55 In the given figure, TP and TQ are two tangents to a circle with centre O, such that $POQ = 110^{\circ}$. Then PTQ is equal to (a) 55° (b) 70° (c)

(d) 90°





ANS: (b) In quadrilateral POQT,

$$PTQ + TPO + TQO + POQ = 360^{\circ}$$

$$\Rightarrow$$
 PTQ + 90° + 90° + 110° = 360°

$$\Rightarrow$$
 PTQ + 290° = 360°

$$\Rightarrow$$
 PTQ = $360^{\circ} - 290^{\circ} = 70^{\circ}$

In figure, PQ and PR are tangents to a circle with 56 centre A. If \angle QPA = 27°, then \angle QAR equals to

(a)
$$63^{\circ}$$

(c)
$$126^{\circ}$$

(d) 117°

 $(c) \angle QPA = \angle RPA$ ANS:

$$[: \Delta AQP \cong \Delta ARP (RHS congruence rule)]$$

$$\Rightarrow$$
 ∠ RPA = 27°

$$\therefore$$
 \angle QPR = \angle QPA + \angle RPA = 27° + 27° = 54° Now,

$$\angle$$
 QAR + \angle AQP + \angle ARP + \angle QPR = 360°

$$\Rightarrow$$
 \angle QAR = $90^{\circ} + 90^{\circ} + 54^{\circ} = 360^{\circ}$

$$\Rightarrow$$
 \angle QAR = $360^{\circ} - 234^{\circ} = 126^{\circ}$

In the below figure, find the actual length of sides of Δ 57 OTP.

In the figure, find the value of x.

