

	A) $20\sqrt{2}$ B) 20 C) $40\sqrt{2}$ D) 40
	ANS: C) $40\sqrt{2}$ cm Solution
	Diagonal = 20 cm, side = $\frac{20}{\sqrt{2}}$ = a
	Perimeter = $4a = 4 \times \frac{20}{\sqrt{2}} = 40\sqrt{2}$ cm
6	In an examination, a student was asked to find $\frac{3}{14}$ of a certain number. By mistake he found $\frac{3}{4}$ of that
	number. His answer was 150 more than the correct answer. then the number is
	A) 280 B) 200 C) 240 D) 400
	ANS: A) 280
	Let the number = x , $\frac{3}{14}x + 150 = \frac{3}{4}x$
	$\frac{3}{4}x - \frac{3}{14}x = 150$
	$3x\left(\frac{1}{4} - \frac{1}{14}\right) = 150$
	$3x\left(\frac{7-2}{28}\right) = 150$, $x = 280$
7	The value of $\left(1 - \frac{1}{2^2}\right) \left(1 - \frac{1}{3^2}\right) \left(1 - \frac{1}{4^2}\right) \dots \dots \dots \left(1 - \frac{1}{2020^2}\right) \left(1 - \frac{1}{2021^2}\right)$ is
	A) $\frac{2022}{2020}$ B) $\frac{1011}{2020}$ C) $\frac{1011}{2021}$ D) $\frac{2022}{2021}$
	ANS: C) $\frac{1011}{2021}$
	Solution: Apply $a^2 - b^2 = (a - b)(a + b)$
	$\left(1 - \frac{1}{2^2}\right)\left(1 - \frac{1}{3^2}\right)\left(1 - \frac{1}{4^2}\right)\dots\dots\dots\dots\left(1 - \frac{1}{2020^2}\right)\left(1 - \frac{1}{2021^2}\right) =$
	$\left(1 - \frac{1}{2}\right)\left(1 + \frac{1}{2}\right)\left(1 - \frac{1}{3}\right)\left(1 + \frac{1}{3}\right)\left(1 - \frac{1}{4}\right)\left(1 + \frac{1}{4}\right)\dots\dots\dots\left(1 - \frac{1}{2021}\right)\left(1 + \frac{1}{2021}\right)$
	$\frac{1}{2} \times \frac{3}{2} \times \frac{2}{3} \times \frac{4}{3} \times \frac{3}{4} \times \frac{5}{4} \dots \dots \frac{2020}{2021} \times \frac{2022}{2021}$ (cancel Nr and Dr)
	$=\frac{1}{2}\times\frac{2022}{2021}=\frac{1011}{2021}$
8	If the sum of two consecutive odd numbers is 2004, then the smaller of the two numbers could be
	A) 1001 B) 1003 C) 999 D) 1005
	ANS: A) 1001
	Solution:
	x + (x + 2) = 2004

	$2x = 2002 \ x = 1001$
9	ABCD is a square and BCE is an equilateral triangle constructed externally. the measure of $\angle AED = $?
	A) 15° B) 30° C) 45° D) 20°
	ANS: B) 30°
	A B E
	ABCD is a square and BCE is equilateral triangle $AB = BC = CD = AD = BE = CE$
	$\angle ABE = 90 + 60 = 150^{\circ}$, $\angle BEC = 60^{\circ}$
	$\angle BAE = \angle BEA = 15^{\circ} (AB = BE)$
	Similarly $\angle CED = CDE = 15^{\circ}$
	$\angle AED + 15 + 15 = 60^{\circ}$, $\angle AED = 30^{\circ}$
10	A car travels 1km distance in which each wheel makes 450 complete revolutions. Find the radius of its wheels.
	(A) 35.35 cm (B) 36.35 cm (C) 38.5 cm (D) 40 cm
	ANS: (A) 35.35 cm Solution One revolution distance covered = $2\pi r$ 450 complete revolutions distance covered = $900 \pi r$
	distance covered = 1 km = $1000m = 100000cm$ $900 \pi r = 100000$
	$r = \frac{100000 \times 7}{900 \times 22} = 35.35 \text{ cm (app)}$
11	Number of zeros which are real numbers of the polynomial $P(x) = x^3 + 1$, is
	(A) 1 (B) 0 (C) 3 (D) 2 ANS: (A) 1
	$x^3 + 1 = 0$, $(x + 1)(x^2 - x + 1) = 0$
	$(x+1) = 0 \ or \ (x^2 - x + 1) = 0$

	x = -1 or
	$x^2 - x + 1 = 0$, $D = b^2 - 4ac = 1 - 4 = -3$, No real roots
12	x - x + 1 = 0, $D = b - 4ac = 1 - 4 = -3$, No leaf foots
	After five years the sum of ages of father and his son will 70. Then four years ago sum of their ages was
	(A) 62 (B) 66 (C) 56 (D) 52
	ANS: (D) 52
	Solution Let the present ages of father and his son be x and y
	x + 5 + y + 5 = 70
	x + y = 60
	four years ago sum of the ages =
13	Also , $x - 4 + y - 4 = x + y - 8 = 60 - 8 = 52$ The sum of the first 1000 positive integers is
	(A) 5050 (B) 50005 (C) 500500 (D) 50500
	ANS: (C) 500500
	Solution: $S_n = \frac{n}{2} \{2a + (n-1)d\}$ OR
1.4	$Sum = \frac{n(n+1)}{2} = 1000 \times \frac{1001}{2} = 500500$
14	From a point P which is at a distance of 13 cm from the centre O of a circle of radius 5 cm, the pair of tangents PQ and PR to the circle are drawn. Then the area of the quadrilateral PQOR is
	(A) 60 cm^2 (B) 65 cm^2 (C) 30 cm^2 (D) 32.5 cm^2
	ANS: (A) 60 cm ² Solution:
	POR, POQ are two right angled triangles. Area of $\Delta POR = \frac{1}{2}bh = \frac{1}{2} \times 5 \times 12 = 30$
	Area of $\triangle POQ = \frac{1}{2}bh = \frac{1}{2} \times 3 \times 12 = 30$ Area of $\triangle POQ = 30$
	Total area = $60 cm^2$
15.	Point A is on the <i>y</i> -axis at a distance of 4 units above from the origin. If coordinates of point B are (-3, 0) then find the length of AB.
	(A) 10 units (B) 5 units (C) 20 units (D) 25 units
	ANS: B) 5 units
	Coordinates of A are (0, 4)
	$\Rightarrow AB = \sqrt{(0 - (-3))^2 + (4 - 0)^2} = \sqrt{9 + 16}$ AB = 5 units
16	If \triangle ABC, \angle B=90°, AB = BC. Then AB: AC=
	11 = 1100,

D) 2: 1

ANS: C) 1: $\sqrt{2}$

Solution: AB = BC = x , AC = $\sqrt{2}$ x , ratio AB: AC = 1: $\sqrt{2}$

17 If 7 times the 7th term of an AP is equal to 11 times its 11th term, then its 18th term will be

(A) 7

(B) 11

(C) 18

(D) 0

ANS: (D) 0

Solution:

$$a_n = a + (n-1)d$$

 $a_7 = a + 6d$, $a_{11} = a + 10 d$

$$7 \times a_7 = 11 \times a_{11}$$

$$7(a+6d) = 11(a+10d)$$

$$7a + 42d = 11a + 110d$$

4a + 68d = 0

a + 17d = 0 , $a_{18} = 0$

In the circle shown, C is the centre and A, B, D and E all lie on the circumference.

Reflex $\angle BCD = 200^{\circ}$, $\angle DCA = x^{\circ}$, $\angle BCA = 3x^{\circ}$ as shown.

The ratio of $\angle DAC$: $\angle BAC$ is _____.

A) 7:2

B) 5: 3

C) 7: 3

D) 7:1

ANS: C) 7:3

Solution $x^{\circ} + 3x^{\circ} = 4x^{\circ} = 360 - 200 = 160^{\circ}$

$$\angle DCA = x^{\circ} = \frac{160}{4} = 40^{\circ}$$

 $3x^{\circ} = 120^{\circ}$

 $AC = CD = radii \implies \angle CAD = \angle CDA$, AC = BC = radii, $\implies \angle CAB = \angle CBA$

	$\angle CAD = 70^{\circ}, \ \angle BAC = 30^{\circ}$
	$\angle DAC : \angle BAC = 70^{\circ}: 30^{\circ}$
	$\angle DAC : \angle BAC = 7:3$
19.	
	In a polygon there are 6 right angles and the remaining angles are all equal to 200° each. Find the number
	of sides of the polygon.
	A) 10 B) 14 C) 20 D) 15
	A) 10 B) 14 C) 20 D) 13
	ANS: D) 15
	Solution: Let the number of sides $=$ n.
	$6 \times 90^{\circ} + (n-6) \times 200^{\circ} = (n-2)180^{\circ}$
	10(n-6) = 9(n-5) solve $n = 15$
20	
	A cube of side 4 cm contains a sphere touching its faces. Find the volume of the gap in between in cm^3 .
	$A = \begin{pmatrix} 6-\pi \\ \end{pmatrix} \qquad B = \begin{pmatrix} 6-\pi \\ \end{pmatrix} \qquad C = \begin{pmatrix} 9-\pi \\ \end{pmatrix} \qquad B = \begin{pmatrix} 6-\pi \\ \end{pmatrix}$
	A) $32\left(\frac{6-\pi}{3}\right)$ B) $12\left(\frac{6-\pi}{3}\right)$ C) $32\left(\frac{9-\pi}{3}\right)$ D) $32\left(\frac{6-\pi}{2}\right)$
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	$(6-\pi)$
	ANS: A) $32 \left(\frac{6-\pi}{3} \right)$
	Solution: Vol. of cube = 64
	Volume of sphere $=\frac{4}{3}\pi \times 2^3$ Required volume $=64-\frac{4}{3}\pi \times 8=32(2-\frac{1}{3}\pi)$
	$(6-\pi)$
	$32\left(\frac{6-\pi}{3}\right)$
	\ 3 /