LINEAR EQUATIONS IN TWO VARIABLES

CLASS IX

SUJITHKUMAR KP

Tell whether the equation $x(x + 2) - x^2 + y(y - 3) - y^2 = 0$ is an equation of linear equation in 2 variables or not.

ANS:
$$x(x+2) - x^2 + y(y-3) - y^2 = 0$$

or $x^2 + 2x - x^2 + y^2 - 3y - y^2 = 0$
 $\Rightarrow 2x - 3y = 0 \Rightarrow 2x - 3y + 0 = 0$

This equation is in the form ax + by + c = 0, where a = 2, b = -3, c = 0. Hence, this is a linear equation in two variables.

Express the following linear equations in the form ax + by + c = 0 and indicate the value of a, b and c in each case:

(i)
$$3x + 4y = 5$$
 (ii) $3x = \frac{8}{3}y + 10$ (iii) $5y = 10x - 7$

(iv)
$$2x + 8 = 11y$$
 (v) $x = 5y$ (vi) $\frac{3}{5}x = 2y$

(vii)
$$8x = 7$$
 (viii) $4y = \frac{8}{3}$ (ix) $5 = 6y$ (x) $12 = \frac{5}{2}x$

ANS: (i)
$$3x + 4y = 5 \implies 3x + 4y - 5 = 0$$

This equation is in the form ax + by + c = 0

Now, on comparing, we have

$$a = 3, b = 4, c = -5$$

(ii)
$$3x = \frac{8}{3}y + 10 \Rightarrow 3x - \frac{8}{3}y - 10 = 0$$

This equation is in the form ax + by + c = 0

Now, on comparing, we have

$$a = 3, b = -\frac{8}{3}, c = -10$$

(iii)
$$5y = 10x - 7 \Rightarrow -10x + 5y + 7 = 0$$

This equation is in the form ax + by + c = 0

Now, on comparing, we have

$$a = -10$$
, $b = 5$, $c = 7$

(iv)
$$2x + 8 = 11y \Rightarrow 2x - 11y + 8 = 0$$

This equation is in the form ax + by + c = 0

Now, on comparing, we have

$$a = 2, b = -11, c = 8$$

(v)
$$x = 5y \Rightarrow x - 5y = 0 \Rightarrow 1.x - 5y + 0 = 0$$

This equation is in the form ax + by + c = 0

Now, on comparing, we have

$$a = 1, b = -5, c = 0$$

(vi)
$$\frac{3}{5}x = 2y \Rightarrow \frac{3}{5}x - 2y = 0 \Rightarrow \frac{3}{5}x - 2y + 0 = 0$$

This equation is in the form ax + by + c = 0

Now, on comparing, we have

$$a = \frac{3}{5}$$
, $b = -2$, $c = 0$

(vii)
$$8x = 7 \Rightarrow 8x - 7 = 0 \Rightarrow 8.x + 0.y - 7 = 0$$

This equation is in the form ax + by + c = 0

Now, on comparing, we have

$$a = 8$$
, $b = 0$, $c = -7$

(viii)
$$4y = \frac{8}{3} \implies 4y - \frac{8}{3} = 0 \implies 0.x + 4y - \frac{8}{3} = 0$$

This equation is in the form ax + by + c = 0

Now, on comparing, we have

$$a = 0, b = 4, c = -\frac{8}{3}$$

(ix)
$$5 = 6y \Rightarrow -6y + 5 = 0 \Rightarrow 0.x - 6y + 5 = 0$$

This equation is in the form ax + by + c = 0

Now, on comparing, we have

$$a = 0, b = -6, c = 5$$

(x)
$$12 = \frac{5}{2} x \Rightarrow -\frac{5}{2} x + 12 = 0$$

$$\Rightarrow -\frac{5}{2}x + 0.y - 12 = 0$$

This equation is in the form ax + by + c = 0

Now, on comparing, we have

$$a=-\frac{5}{2}$$
, $b=0$, $c=-12$

Find a, if linear equation 3x - ay = 6 has one solution as (4, 3).

ANS: On putting x = 4 and y = 3 in the equation 3x - ay = 6, we have

$$3 \times 4 - a \times 3 = 6$$

$$\Rightarrow$$
 12 - 3a = 6 \Rightarrow 12 - 6 = 3a \Rightarrow 3a = 6

$$\Rightarrow a = \frac{6}{3} \Rightarrow a = 2$$

Hence, a = 2.

Find the value of b, if x = 5, y = 0 is a solution of the equation 3x + 5y = b.

ANS: On putting x = 5 and y = 0 in the equation 3x + 5y = b, we have

$$3 \times 5 + 5 \times 0 = b$$

$$\Rightarrow$$
 15 + 0 = $b \Rightarrow b = 15$

Hence, b = 15.

5 For what value of k, x = 2 and y = -1 is a solution of x + 3y - k = 0.

ANS: On putting x = 2 and y = -1 in the equation x + 3y - k = 0, we have

$$2 + 3 \times (-1) - k = 0$$

$$\Rightarrow 2 - 3 - k = 0 \Rightarrow -1 - k = 0$$

$$\Rightarrow k = -1$$

6 If a line represented by the equation $3x + \alpha y = 8$ passes through (1, 1), then find the value of α .

ANS:
$$3x + \alpha y = 8$$
 ...(i)

On putting x = 1 and y = 1 in (i), we have

$$3 \times 1 + \alpha \times 1 = 8 \Rightarrow 3 + \alpha = 8$$

$$\Rightarrow \alpha = 8 - 3 \Rightarrow \alpha = 5$$

Find the value of α , so that x = 1 and y = 1 is a solution of the equation $5 \alpha x + 30 \alpha y = 70$.

ANS: On putting x = 1 and y = 1 in equation 5 $\alpha x + 30 \alpha y = 70$, we have

$$5 \alpha \times 1 + 30 \alpha \times 1 = 70 \Rightarrow 5 \alpha + 30 \alpha = 70$$

$$\Rightarrow$$
 35 $\alpha = 70 \Rightarrow \alpha = \frac{70}{35} \Rightarrow \alpha = 2$

8 If (2, 0) is a solution of the linear equation 2x + 3y = k, then find the value of k.

ANS: On putting x = 2 and y = 0 in the equation 2x + 3y = k, we have

$$2 \times 2 + 3 \times 0 = k$$

$$4 + 0 = k \Rightarrow k = 4$$

Is the point (0, 3) lie on the graph of the linear equation 3x + 4y = 12?

ANS:
$$3x + 4y = 12$$

On putting x = 0 and y = 3 in the given linear equation, we have

$$3 \times 0 + 4 \times 3 = 12 \Rightarrow 0 + 12 = 12 \Rightarrow 12 = 12$$
, true

So, the point (0, 3) lies on the graph of the linear equation 3x + 4y = 12.

10 At what point the graph of the linear equation x + y = 5 cuts the x-axis?

ANS: At x-axis,
$$y = 0$$

On putting
$$y = 0$$
 in $x + y = 5$, we have

$$x + 0 = 5 \Rightarrow x = 5$$

Therefore, the graph of the linear equation x + y = 5 cuts the x-axis at (5, 0).

At what point the graph of the linear equation 2x - y = 7 cuts the y-axis.

ANS: At y-axis,
$$x = 0$$

On putting
$$x = 0$$
 in $2x - y = 7$, we have

$$2 \times 0 - y = 7$$

$$\Rightarrow 0 - y = 7$$

$$\Rightarrow v = -7$$

Therefore, the graph of the linear equation 2x - y = 7 cuts the y-axis at (0, -7).

12 Express 2x = 5y in the form ax + by + c = 0

ANS:
$$2x - 5y = 0$$

$$\Rightarrow 2x - 5y + 0 = 0$$
 ...(i)

From (i), we notice, it is an equation of the form

$$ax + by + c = 0$$

where
$$a = 2, b = -5, c = 0$$

Tell whether the equation $y(y + 3) - y^2 + 4x + 8 = 0$ is an equation of linear equation in 2 variables or not

ANS:
$$y(y+3) - y^2 + 4x + 8 = 0$$

$$\Rightarrow v^2 + 3v - v^2 + 4x + 8 = 0$$

$$\Rightarrow$$
 4x + 3y + 8 = 0 ...(i)

From (i), we notice, it is an equation of the form ax + by + c = 0, where a = 4, b = 3 and c = 8.

So, it is a linear equation of two variables.

Express -5y = 8x + 2 in the form ax + by + c = 0 also find a, b and c.

ANS:
$$-5y = 8x + 2 \Rightarrow 8x + 5y + 2 = 0$$
 ...(i)

From (i), we notice, it is an equation of the form

$$ax + by + c = 0$$

where,
$$a = 8$$
, $b = 5$, $c = 2$

Find b, if linear equation 3bx - y = 9 has one solution as (3, 3).

ANS:
$$3bx - y = 9$$
 ...(i)

On putting (3, 3) in (i), we have

$$3b \times 3 - 3 = 9 \Rightarrow 9b - 3 = 9 \Rightarrow 9b = 12$$

$$\Rightarrow b = \frac{12}{9} \Rightarrow b = \frac{4}{3}$$

How many solution(s) of the linear equation 2x + 3y = 18 has?

ANS:
$$2x + 3y = 18$$

2x + 3y = 18 is a linear equation in two variables. So, it has infinite solutions.

Find the value of k, if the line 3kx = 5 + 2y, will pass through: (i) (1, 1) (ii) (1, 2) (iii) (2, 1)

ANS: 3kx = 5 + 2y ...(i)

(i) On putting (1, 1) in (i), we have

$$3k \times 1 = 5 + 2 \times 1$$

$$\Rightarrow$$
 $3k = 5 + 2 \Rightarrow k = \frac{7}{3}$

(ii) On putting (1, 2) in (i), we have

$$3k \times 1 = 5 + 2 \times 2$$

$$\Rightarrow$$
 3 $k = 5 + 4 \Rightarrow k = 3$

(iii) On putting (2, 1) in (i), we have

$$3k \times 2 = 5 + 2 \times 1$$

$$\Rightarrow$$
 $6k = 5 + 2 \Rightarrow k = \frac{7}{6}$

Side of an equilateral triangle is x. If the perimeter is 30 cm, find the value of x.

ANS:
$$x + x + x = 30$$

$$3x = 30 \Rightarrow x = 10$$

19 Is the point (2, 1) lie on the graph of the linear equation 5x + 15y = 19?

ANS:
$$5x + 15y = 19$$
 ...(i)

On putting (2, 1) in (i), we have

$$5 \times 2 + 15 \times 1 = 19$$

$$\Rightarrow$$
 10 + 15 = 19

25 = 19, false Hence, the point (2, 1) is not lie on the graph of the given linear equation 5x + 15y = 19.

Is the point (3, 0) lie on the graph of the linear equation 5x - y = 15?

ANS:
$$5x - y = 15$$
 ...(i)

On putting (3, 0) in (i), we have

$$5 \times 3 - 0 = 15$$

$$15 = 15$$
, true

Hence, the point (3, 0) lie on the graph of the linear equation 5x - y = 15.

21 The cost of a pen is three times the cost of a pencil. Write a linear equation in two variables to represent this statement.

(Take the cost of a pen to be Rs. x and that of a pencil to be Rs y)

ANS: Let the cost of a pen be Rs x and that of a pencil be Rs y.

According to question,

$$x = 3y \implies x - 3y = 0$$

Hence, this is required equation

Age of x is more than the age of y by 10 years. Express this statement in linear equation.

ANS: According to question,

$$x = y + 10$$

$$\Rightarrow x - y - 10 = 0 \Rightarrow 1.x - 1.y - 10 = 0$$

This equation is in the form ax + by + c = 0,

where
$$a = 1, b = -1, c = -10$$

Hence, this is required linear equation.

Write the linear equation such that each point on its graph has an ordinate 3 times its abscissa.

ANS: Let x be the abscissa and y be the ordinate

According to question,

$$y = 3x \implies y - 3x = 0$$

Hence, this is required linear equation.

When a number is divided by another number, the quotient and remainder obtained are 9 and 1 24 respectively. Express this information in linear equation.

Let the dividend be y and the divisor be x

We know that,

 $Dividend = Divisor \times Quotient + Remainder$

According to question, y = 9x + 1

The sum of a two-digit number and the number obtained by reversing the order of its digits is 88. Express 25 this information in linear equation.

ANS: Let unit's digit be x and ten's digit be y.

then original number be (10y + x)

after reversing the order of digits new number be (10x + y)

According to question,

$$10y + x + 10x + y = 88$$

$$11x + 11y = 88$$

x + y = 8 (dividing both sides by 11)

26 Write a linear equation on which the point of the form (a, -a) always lies.

Here, x = a, y = -a

That means for x = a, we get y = -a and vice versa.

Therefore, x + y = 0 and -x - y = 0 are equations for which the point of the form (a, -a) always lies.

Find two solutions for the equation 4x + 3y = 24. How many solutions of this equation are possible? 27

4x + 3y = 24ANS:

On putting
$$x = 0$$
, we have $4 \times 0 + 3y = 24 \implies 0 + 3y = 24 \implies 3y = 24$
 $\Rightarrow y = \frac{24}{3} \implies y = 8$

$$\Rightarrow y = \frac{24}{3} \Rightarrow y = 8$$

On putting y = 0, we have

$$4x + 3 \times 0 = 24 \implies 4x + 0 = 24 \implies 4x = 24$$

$$\Rightarrow \quad x = \frac{24}{4} \quad \Rightarrow \quad x = 6$$

Therefore, two solutions are (0, 8) and (6, 0).

Given equation is a linear equation in two variables. Therefore, it has infinitely many solutions

. Write 3x + 2y = 18 in the form of y = mx + c. Find the value of m and c. Is (4, 3) lies on this linear 28 equation?

Given: 3x + 2y = 18

$$\Rightarrow \quad y = \frac{18 - 3x}{2} = -\frac{3}{2}x + 9$$

On comparing, we get $m = -\frac{3}{2}$ and c = 9

Substitute x = 4 in (i), we get $y = -\frac{3}{2} \times 4 + 9 = -6 + 9 = 3$

Hence, point (4, 3) lies on 3x + 2y = 18.

29 Find the value of a and b, if the line 6bx + ay = 24 passes through (2, 0) and (0, 2).

ANS:
$$6bx + ay = 24$$
 ...(i)

On putting
$$x = 2$$
 and $y = 0$ in (i), we have

$$6b \times 2 + a \times 0 = 24 \implies 12b + 0 = 24 \implies 12b = 24$$

$$\Rightarrow b = \frac{24}{12} \Rightarrow b = 2$$

On putting x = 0 and y = 2 in (i), we have

$$6b \times 0 + a \times 2 = 24 \implies 0 + 2a = 24 \implies 2a = 24$$

$$\Rightarrow a = \frac{24}{2} \Rightarrow a = 12$$

Hence, value of a and b are 12 and 2 respectively.

30 Check whether the equation $(x-5)x + 6y - x^2 = 0$ is an equation of the form ax + by + c = 0 or not.

ANS:
$$(x-5)x + 6y - x^2 = 0 \implies x^2 - 5x + 6y - x^2 = 0$$

$$\Rightarrow -5x + 6y + 0 = 0 \qquad \dots (i)$$

From (i), we notice, it is an equation, of the form

$$ax + by + c = 0$$
 where, $a = -5$, $b = 6$, $c = 0$

31 Age of x is less than the age of y by 5 years. Express this statement in linear equation.

ANS: According to question, $x + 5 = y \implies x - y + 5 = 0$

This is the required linear equation.

32 The cost of a notebook is 5 times the cost of a calendar. Write a linear equation in two variables to represent this statement.

ANS: Let *x* be cost of a notebook and *y* be cost of a calendar.

According to question, x = 5y

Write the linear equation if each point on its graph has an abscissa 2 times its ordinate

ANS: Let x be the abscissa and y be the ordinate

According to the question, x = 2y

Write a linear equation on which the point of the form (-b, b) always lies.

ANS:
$$x + y = 0$$
 ...(i)

On putting (-b, b) in (i), we have

$$-b + b = 0$$
, True

Hence, x + y = 0 is a linear equation, on which point (-b, b) lies.

35 If x years represents the present age of the father and y years represents the present age of the son, then find the equation of the statement "present age of the father is 5 more than 6 times age of the son".

ANS: According to the question,

$$x = 6y + 5$$

36 Find the two solutions for the equation 3x - 4y = 12. How many solutions of this equation are possible?

ANS:
$$3x - 4y = 12$$
 ...(i)

On putting x = 0 in (i), we have

$$3 \times 0 - 4y = 12 \implies 0 - 4y = 12 \implies y = -3$$

On putting y = 0 in (i), we have

$$3x-4\times0=12 \Rightarrow 3x=12 \Rightarrow x=4$$

Hence, (0, -3) and (4, 0) are two solutions of the equation 3x - 4y = 12.

Given equation 3x - 4y = 12 is a linear equation in two variables. Hence, it has infinite solutions

Find the value of a and b, if the lines 2ax + 7by = 14 and 3ax - 7by = 6 pass through (2, 1).

ANS:
$$2ax + 7by = 14$$
 ...(i)

$$3ax - 7by = 6$$
 ...(ii)

On putting (2, 1) in (i), we have

$$2a \times 2 + 7b \times 1 = 14$$

$$\Rightarrow$$
 4*a* + 7*b* = 14 ...(iii)

On putting (2, 1) in (ii), we have

$$3a \times 2 - 7b \times 1 = 6$$

$$\Rightarrow 6a - 7b = 6$$
 ...(iv)

On adding (iii) and (iv), we have

$$10a = 20 \implies a = 2$$

On putting a = 2 in (iii), we have

$$4 \times 2 + 7b = 14 \implies 8 + 7b = 14$$

```
\Rightarrow 7b = 6 \Rightarrow b = \frac{6}{7}
```

- 38 Find the value of a, if the line 3y = ax + 7, will pass through:
 - (i) (3, 4), (ii) (1, 2), (iii) (2, -3)

ANS: 3y = ax + 7

(i) Putting x = 3 and y = 4 in the given equation of line, we have

$$3 \times 4 = a \times 3 + 7 \implies 12 = 3a + 7 \implies 3a = 12 - 7$$

$$\Rightarrow 3a = 5 \Rightarrow a = \frac{5}{3}$$

- (ii) Putting x = 1 and y = 2 in the given equation of line, we have
- $3 \times 2 = a \times 1 + 7 \implies 6 = a + 7 \implies a = 6 7 \implies a = -1$
- (iii) Putting x = 2 and y = -3 in the given equation, we have

$$3 \times (-3) = a \times 2 + 7 \implies -9 = 2a + 7 \implies 2a = -9 - 7$$

$$\Rightarrow 2a = -16 \Rightarrow a = -8$$

Show that the points A (1, 2), B (-1, -16) and C (0, -7) lie on the graph of the linear equation y = 9x - 7.

ANS:
$$y = 9x - 7$$

or
$$9x - y = 7$$
 ...(i)

On putting x = 1, y = 2 in (i), we have

$$9 \times 1 - 2 = 7 \implies 9 - 2 = 7$$

$$\Rightarrow$$
 7 = 7, true.

Therefore, (1, 2) is a solution of linear equation y = 9x - 7.

On putting x = -1, y = -16 in (i), we have

$$9 \times (-1) - (-16) = 7 \implies -9 + 16 = 7$$

$$\Rightarrow$$
 7 = 7, true.

Therefore, (-1, -16) is a solution of linear equation y = 9x - 7.

On putting x = 0, y = -7 in (i), we have

$$9 \times 0 - (-7) = 7 \implies 0 + 7 = 7$$

$$\Rightarrow$$
 7 = 7, true.

Therefore, (0, -7) is a solution of linear equation y = 9x - 7.

Determine the point on the line of linear equation 2x + 5y = 20 whose x-coordinate is $\frac{5}{2}$ times its ordinate.

ANS: Given: The x-coordinate of the point is $\frac{5}{2}$ times its y-coordinate $x = \frac{5y}{2}$

Now, putting $x = \frac{5y}{2}$ in the given line 2x + 5y = 20, we get

$$2 \times \frac{5y}{2} + 5y = 20 \implies 10y = 20 \implies y = 2$$

 $x = \frac{5}{2} \times 2 = 5$

Thus, the required co-ordinate of the point is (5, 2)

- 41 For what value of p; x = 2, y = 3 is a solution of (p + 1)x (2p + 3)y 1 = 0?
 - (i) Write the equation.
 - (ii) How many solutions of this equation are possible?
 - (iii) Is this line passes through the point (-2, 3)? Give justification.

ANS: Given:
$$(p + 1)x - (2p + 3)y - 1 = 0$$
 ...(i)

Put x = 2 and y = 3 in (i), we get

$$(p+1)2 - (2p+3)3 - 1 = 0$$

$$\Rightarrow 2p + 2 - 6p - 9 - 1 = 0$$

$$\Rightarrow -4p + 2 - 10 = 0$$

$$\Rightarrow -4p = 8 \Rightarrow p = -2$$

(i) Substitute the value of p in (i), we get

$$(-2+1)x - [2(-1)+3]y - 1 = 0$$

$$\Rightarrow -x-y-1=0$$

```
\Rightarrow x + y + 1 = 0
                                                               ...(ii)
               (ii) Since the given equation is a linear equation in two variables. Therefore, it has infinitely many
               solutions.
               (iii) Substitute x = -2 and y = 3 in L.H.S. of (ii), we have
               L.H.S. = -2 + 3 + 1 = 2 \neq R.H.S.
               Hence, the line x + y + 1 = 0 will not pass through the point (-2, 3).
42
               (i) If the point (4, 3) lies on the linear equation 3x - ay = 6, find whether (-2, -6) also lies on the same
               line? (ii) Find the coordinate of the point lies on above line
               (a) abscissa is zero
                                                                                    (b) ordinate is zero
               ANS: (i) If point (4, 3) lies on 3x - ay = 6, then
               3 \times 4 - a \times 3 = 6
               \Rightarrow12 – 3a = 6
               \Rightarrow - 3a = 6 - 12 = -6
               \Rightarrow 3a = 6 \Rightarrow a = 2
               So, linear equation became 3x - 2y = 6
               Substitute x = -2 and y = -6 in L.H.S. of (i), we get
               L.H.S. = 3 \times (-2) - 2 \times (-6) = -6 + 12 = 6 = \text{R.H.S.}
               Hence, (-2, -6) lies on the line 3x - 2y = 6
               (ii) (a) When abscissa is zero, it means x = 0.
               From (i), we get
               3 \times 0 - 2 \times y = 6
               \Rightarrow -2v = 6
               \Rightarrow v = -3
                                                         Required point is (0, -3)
               (b) When ordinate is zero. i.e. y = 0
               From (i), we get 3x - 2 \times 0 = 6 \Rightarrow x = 2 Required point is (2, 0)
                The equation x = 5 in two variables can be written as
43
                                                                                   (B) 0.x + 1.y = 5
                                                                                                                                               (C) 0.x + 0.y = 5 (D) 1.x + 0.y = 5
               (A) 1.x + 1.y = 5
               ANS:
                                        (D)
44
                The linear equation 3y - 5 = 0, represented as ax + by + c = 0, has (a) a unique solution (b) infinitely
               many solutions (c) two solutions (d) no solution
               ANS:
                                        (B)
                x = 5, y = -2 is a solution of the linear equation
45
                                                                        (B) 2x - y = 12
               (A) 2x + y = 9
                                                                                                                                     (C) x + 3y = 1
                                                                                                                                                                                                (D) x + 3y = 0
               ANS: Substituting x = 5 and y = -2 in LHS of 2x - y = 12,
               we have
               LHS = 2 \times 5 - (-2) = 10 + 2 = 12 = RHS Correct option is (B).
46
                Let y varies directly as x. If y = 24, when x = 8, then the linear equation is
                (A) 3y = x
                                                                            (B) y = x
                                                                                                                                   (C) y = 4x
                                                                                                                                                                                                (D) y = 3x
               ANS:
                                        (D)
47
                If the linear equation has solutions (-3, 3), (0, 0), (3, -3), then equation is
               (A) x - y = 0
                                                                            (B) x + y = 0
                                                                                                                                   (C) 2x - y = 0
                                                                                                                                                                                              (D) x + 2y = 0
               ANS:
                                        (B)
48
                If point (3, 0) lies on the graph of the equation 2x + 3y = k, then the value of k is
               (A) 6
                                                    (B)3
                                                                                                 (C) 2
                                                                                                                              (D) 5
               ANS:
                                        On putting x = 3 and y = 0 in the equation 2x + 3y = k, we have 2 \times 3 + 3 \times 0 = k \Rightarrow 6 + 0 = k 
               k = 6 Correct option is (A).
49
                The graph of the linear equation 3x + 5y = 15 cuts the x-axis at the point
               (A)(5,0)
                                                                                           (C)(0,5)
                                                      (B)(3,0)
                                                                                                                           (D)(0,3)
                                        At x-axis, y = 0
                ANS:
```

