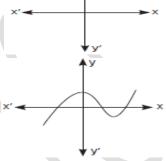

ANANDALAYA

CLASS X (BASIC & STANDARD)


POLYNOMIAL (ONE MARK QUESTIONS) - 2021-22

	Product of the zeros of the quadratic polynomial $x^2 - 5$ (A) -1 (B) -5 (C) 5 (D) none of the these If α and β are the zeros of the polynomial $x^2 + 2x + 4$, then the value of $\alpha^3 + \beta^3 =$
	(A) 4 (B) 8 (C) 16 (D) none of the these A quadratic polynomial whose zeroes are $3 + 2\sqrt{2}$ and $3 - 2\sqrt{2}$. (A) $x^2 + 6x + 1$ (B) $x^2 - 6x + 1$ (C) $x^2 - 6x - 1$ (D) $x^2 - 9x + 8$ Find a quadratic polynomial whose zeroes are $5 + \sqrt{2}$, $5 - \sqrt{2}$
	If one zero of the polynomial $3x^2 - 7px + 10p$ is 5, find p. (A) 4 (B) 2 (C) 3 (D) none of the these If α , β are zeroes of polynomial $x^2 - 6x + k$, find the value of k such that $(\alpha + \beta)^2 - 2\alpha\beta = 40$.
	a) -2 b) 2 c) 3 d) None of these If one zero of the quadratic polynomial $x^2 + 3x + k$ is 2, then the value of k is (A) 10 (B) -10 (C) 5 (D) -5 Quadratic polynomial, whose zeroes are -3 and 4 is
	Given that two of the zeroes of the cubic polynomial $ax^3 + bx^2 + cx + d$ are 0, the third zero is (A) $-\frac{b}{a}$ (B) $\frac{b}{a}$ (C) $\frac{c}{a}$ (D) $-\frac{d}{a}$
10	If the sum of the zeros of the quadratic polynomial $ky^2 + 2y - 3k$ is equal to twice their product, then $k = $
11	If α , β and γ are the zeros of the polynomial $6x^3 + 3x^2 - 5x + 1$. find the value of $\alpha^{-1} + \beta^{-1} + \gamma^{-1}$
12	The graph of $y = f(x)$ is given, for some polynomial $f(x)$. Find the number of zeroes of $f(x)$.

13 The graph of y = f(x) is given below. How many zeroes are there of f(x)?

14 The graph of y = f(x) is given below. How many zeroes are there of f(x)?

- 15 The graph of y = f(x) is given below, for some polynomial f(x). Find the number of zeroes of f(x).
- 16 If α , β are the zeroes of a polynomial, such that $\alpha + \beta = 6$ and $\alpha \beta = 4$, then write the polynomial.

(a)
$$k(x^2 - 6x + 4)$$
 (b) $k(x^2 + 6x + 4)$ $k(x^2 + 6x + 4)$

$$k(x^2 + 6x + 4)$$

(c)
$$k(x^2 - 4x + 6)$$
 (d)

17 α , β , γ are zeroes of cubic polynomial $kx^3 - 5x + 9$. If $\alpha^3 + \beta^3 + \gamma^3 = 27$, find the value of k.

(a)
$$-1$$

- 18 If α and β are roots of the equation $2x^2 10x + 5 = 0$ then the value of $(\alpha + 2)(\beta +$ $2) = _{---}$.
- 19 Find the value of m if polynomial $p(x) = 4x^2 6x m$ is exactly divisible by x 3.
- 20 If 1 is a zero of the polynomial $p(x) = ax^2 3(a-1) 1$, then the value of a =
- 21 If the sum of the zeroes of the quadratic polynomial $ky^2 + 2y 3k$ is equal to twice their product, find the value of k.
- 22 Find the product of the zeroes of $3x^2 x + 7$
- 23 If α and β are zeros of the quadratic polynomial $x^2 3kx + k^2$, the value of k if $\alpha^2 + \beta^2 = \frac{7}{4}$
- 24 If one zero of the quadratic polynomial $x^2 + 3x + k$ is 2, then the value of k is_____
- 25 The quadratic polynomial whose zeroes are $\sqrt{15}$ and $-\sqrt{15}$ is _____
- 26 Find the sum of the zeroes of the given quadratic polynomial $-3x^2 + k$.

- 27 If one zero of the polynomial $x^2 4x + 1$ is $2 + \sqrt{3}$, write the other zero.
- 28 For what value of p, (-4) is a zero of the polynomial $x^2 2x (7p + 3)$?
- 29 If x + 2 is a factor of the polynomial $5x^3 + (k + 2)x^2 3kx + 2$, then find the value of k.
- 30 Find the zeroes of the polynomial $(x-2)^2 + 4$.
- 31 If p(x) = ax + b. Find zeroes of p(x).
- 32 $P(x) = ax^2 + bx + c$. If a + b + c = 0, then find one of its zero.
- 33 A polynomial of degree five is divided by a quadratic polynomial. If it leaves a remainder, then find the degree of remainder
- 34 If $x^3 + x^2 ax + b$ is divisible by $x^2 x$, write the values of a and b.
- 35 Write the zeroes of polynomial $x^2 x 6$.
- 36 Find the sum of the zeroes of quadratic polynomial $x^2 + 7x + 1$
- 37 If p(x) = 5x 10 is divided by $x \sqrt{2}$, then find remainder.
- 38 If one of the zeros of $ax^2 + bx + c$ is triple the other, show that $3b^2 = 16ac$
- 39 If one zero of the polynomial $p(x) = (a^2 + 9)x^2 + 45x + 6a$ is reciprocal of the other, find the value of a.
- 40 Find the zeroes of the polynomial $\sqrt{3}x^2 + 10x + 7\sqrt{3}$.
- 41 If α and β are the zeroes of the quadratic polynomial $x^2 + 5x k$ and $\alpha \beta = 1$, find the value of k.
- 42 If p and q are the zeroes of the polynomial $x^2 + 7x + 7$, then form a quadratic polynomial whose zeroes are 2p and 2q.
- 43 If α and β are the zeroes of the quadratic polynomial $x^2 3x 2$ form a quadratic polynomial whose zeroes are $\frac{1}{2\alpha + \beta}$ and $\frac{1}{2\beta + \alpha}$.
- 44 If α and β are zeroes of the quadratic polynomial $x^2 + kx + 12$ such that $\alpha \beta = 1$, find k
- 45 If α and β are the zeroes of $x^2 5x + 6$, find the value of $\alpha^2 \beta^2$.

- 46 Form a quadratic polynomial with rational coefficient and one of whose zeroes is $3 + \sqrt{5}$.
- 47 If α and β are the zeroes of $2x^2 3x + 2$, form a quadratic polynomial whose zeroes are $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$.
- 48 If α and β are two numbers such that $\alpha + \beta = a$ and $\alpha \beta = b$, find a quadratic polynomial whose zeroes α and β .
- 49 If α and β are the zeroes of $2x^2 5x 7$, form a quadratic polynomial whose zeroes are $\alpha + 2\beta$ and $\beta + 2\alpha$.
- 50 Find the condition on a, b and c so that one zero of $ax^2 + bx + c$ is double the other zero.

Sujithkumar KP